The performance characteristics of a rice husk based integrated gasification combined cycle (IGCC) plant has been developed at the variable operating conditions of gasifier. A thermo-chemical model developed by the authors has been applied for wet fuel (fuel with moisture) for predicting the gas composition, gas generation per kg of fuel, plant efficiency and power generation capacity, and NOx and CO2 emissions. The effect of the relative air fuel ratio (RAFR), steam fuel ratio (SFR), and gasifier pressure has been examined on the plant electrical efficiency, power output, and NOx and CO2 emissions of the plant with and without supplementary firing (SF) between gas turbine (GT) outlet and heat recovery steam generator (HRSG). The optimum working conditions for efficient running of the IGCC plant are 0.25 RAFR, 0.5 SFR, and 11 bar gasifier pressure at the GT inlet temperature of 1200 °C. The optimum operational conditions of the gasifier for maximum efficiency condition are different compared to maximum power condition. The current IGCC plant results 264.5 MW of electric power with the compressor air flow rate of 375 kg/s at the existed conventional combined cycle plant conditions (Srinivas et al., 2011, “Parametric Simulation of Combined Cycle Power Plant: A Case Study,” Int. J. Thermodyn. 14(1), pp. 29–36). The optimum compressor pressure ratio increases with increase in GT inlet temperature and decreases with addition of SF.

References

References
1.
Paisley
,
M. A.
, and
Welch
,
M. J.
, 2003, “
Biomass Gasification Combined Cycle Opportunities Using the Future Energy Silvagas Gasifier Coupled to Alstom’s Industrial Gas Turbines
,”
Proceedings of ASME Turbo Expo 2003
, Georgia World Congress Center, No. GT2003-38294:1-7.
2.
Margaret
,
K. M.
, and
Pamela
,
L. S.
, 2002, “
Life Cycle Assessment Comparisons of Electricity From Biomass, Coal, and Natural Gas
,” Paper No. 18d, National Renewable Energy Laboratory, Annual Meeting of the American Institute of Chemical Engineers.
3.
Anil
,
K.
,
Prasad
,
P.
,
Preeti
,
A.
, and
Anuradda
,
G.
, 2006, “
Equilibrium Model for Biomass Gasification
,”
Proceedings of International conference on Advances in Energy Research
(AER, 2006), pp.
106
112
.
4.
Laihong
,
S.
,
Yang
,
G.
, and
Jun
,
X.
, 2008, “
Simulation of Hydrogen Production From Biomass Gasification in Interconnected Fluidized Beds
,”
Biomass Bioenergy
,
32
(
2
), pp.
120
127
.
5.
Jarungthammachote
,
S.
, and
Dutta
,
A.
, 2007, “
Thermodynamic Equilibrium Model and Second Law Analysis of a Downdraft Waste Gasifier
,”
Energy
,
32
(
9
), pp.
1660
1669
.
6.
Srinivas
,
T.
,
Gupta
,
A. V. S. S. K. S.
, and
Reddy
,
B. V.
, 2009, “
Thermodynamic Equilibrium Model and Exergy Analysis of a Biomass Gasifier
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), pp.
1
7
.
7.
Srinivas
,
T.
,
Gupta
,
A. V. S. S. K. S.
,
Reddy
,
B. V.
, and
Nag
,
P. K.
, 2006, “
Parametric Analysis of a Coal Based Combined Cycle Power Plant
,”
Int. J. Energy Res.
,
30
(
1
), pp.
19
36
.
8.
Srinivas
,
T.
,
Reddy
,
B. V.
, and
Gupta
,
A. V. S. S. K. S.
, 2011, “
Biomass Fueled Integrated Power and Refrigeration System
,”
Proc. Inst. Mech. Eng., Part A
,
225
(
3
), pp.
249
258
.
9.
Lin
,
J. C.
, 2007, “
Combination of a Biomass Fired Updraft Gasifier and a Stirling Engine for Power Production
,”
ASME J. Energy Resour. Technol.
,
129
(
1
), pp.
66
70
.
10.
Floriani
,
S. L.
,
Virmond
,
E.
,
Luiz
,
D. B.
, and
Althoff
,
C. A.
, 2010, “
Potential of Industrial Solid Wastes as Energy Sources and Gaseous Emissions Evaluation in a Pilot Scale Burner
,”
ASME J. Energy Resour. Technol.
,
132
(
1
), pp.
1
7
.
11.
Maxwell
,
T. T.
,
Nevill
,
J. D.
,
Ertas
,
J.
, and
Craig
,
J.
, 2005, “
Biomass Feed System Flow Control Using a Weigh Belt Table
,”
ASME J. Energy Resour. Technol.
,
127
(
1
), pp.
71
82
.
12.
Virmond
,
E.
,
Schacker
,
R. L.
,
Albrecht
,
W.
,
Althoff
,
C. A.
,
Souza
,
M.
,
Moreira
,
R. F. E. M.
, and
Jose
,
H.
, 2010, “
Combustion of Apple Juice Wastes in a Cyclone Combustor for Thermal Energy Generation
,”
ASME J. Energy Resour. Technol.
,
132
(
4
), pp.
1
9
.
13.
Jangsawang
,
W.
,
Klimanek
,
A.
, and
Gupta
,
A. K.
, 2006, “
Enhanced Yield of Hydrogen From Wastes Using High Temperature Steam Gasification
,”
ASME J. Energy Resour. Technol.
,
128
(
3
), pp.
179
185
.
14.
De Kam
,
M. J.
,
Morey
,
R. V.
, and
Tiffany
,
D. G.
, 2009, “
Biomass Integrated Gasification Combined Cycle for Heat and Power at Ethanol Plants
,”
Energy Convers. Manage.
,
50
(
7
), pp.
1682
1690
.
15.
Wu
,
C.
,
Yin
,
X.
,
Ma
,
L.
,
Zhou
,
Z.
, and
Chen
,
H.
, 2009, “
Operational Characteristics of a 1.2-MW Biomass Gasification and Power Generation Plant
,”
Biotechnol. Adv.
,
27
(
5
), pp.
588
592
.
16.
Finckh
,
H. H.
, and
Pfost
,
H.
, 1992, “
Development Potential of Combined-Cycle (GUD) Power Plants With and Without Supplementary Firing
,”
ASME J. Eng. Gas Turbines Power
,
114
(
4
), pp.
653
659
.
17.
Gnanapragasam
,
N. V.
,
Reddy
,
B. V.
, and
Rosen
,
M. A.
, 2009, “
Optimum Conditions for a Natural Gas Combined Cycle Power Generation System Based on Available Oxygen When Using Biomass as Supplementary Fuel
,”
Energy
,
34
(
6
), pp.
816
826
.
18.
De
,
S.
, and
Nag
,
P. K.
, 2000, “
Effect of Supplementary Firing on the Performance of an Integrated Gasification Combined Cycle Power Plant
,”
Proc. Inst. Mech. Eng., Part A
,
214
(
1
), pp.
53
60
.
19.
Korakianitis
,
T.
,
Grantstrom
,
J.
, and
Wassingbo
,
P.
, 2005, “
Parametric Performance of Combined Cycle-Cogeneration Power Plants With Various Power and Efficiency Enhancements
,”
ASME J. Gas Turbines Power
,
127
(
1
), pp.
65
72
.
20.
Srinivas
,
T.
,
Reddy
,
B. V.
, and
Gupta
,
A. V. S. S. K. S
, 2011, “
Parametric Simulation of Combined Cycle Power Plant: A Case Study
,”
Int. J. Thermodyn.
14
(
1
), pp.
29
36
.
21.
Yin
,
X. L.
,
Wu
,
C. Z.
,
Zheng
,
S. P.
,
Chen
,
Y.
, 2002, “
Design and Operation of a CFB Gasification and Power Generation System for Rice Husk
,”
Biomass Bioenergy
,
23
(
3
), pp.
181
187
.
22.
Srinivas
,
T.
, 2009, “
Study of a Deaerator Location in Triple Pressure-Reheat Combined Power Cycle
,”
Energy
,
34
(
9
), pp.
1364
1371
23.
Jayah
,
T. H.
,
Aye
,
L.
,
Fuller
,
R. J.
, and
Stewart
,
D. F.
, 2003, “
Computer Simulation of a Downdraft Wood Gasifier for Tea Drying
,”
Biomass Bioenergy
,
25
(
4
), pp.
459
469
.
24.
Turn
,
S.
,
Kinoshita
,
C.
,
Zhangt
,
Z.
,
Ishimura
,
D.
, and
Zhou
,
J.
, 1998, “
An Experimental Investigation of Hydrogen Production From Biomass Gasification
,”
Int. J. Hydrogen Energy
,
23
(
8
), pp.
64
648
.
25.
Lv
,
P. M.
,
Xiong
,
Z. H.
,
Chang
,
J.
,
Wu
,
C. Z.
,
Chen
,
Y.
, and
Zhu
,
J. X.
, 2004, “
An Experimental Study on Biomass Air-Steam Gasification in a Fluidized Bed
,”
Bioresour. Technol.
,
95
(
1
), pp.
95
101
.
26.
Steinwall
,
P.
, 1997, “
Integration of Biomass Gasification and Evaporative Gas Turbine Cycles
,”
Energy Convers. Manage.
,
38
(
15–17
), pp.
1665
1670
.
27.
Baratieri
,
M.
,
Baggio
,
P.
,
Bosio
,
B.
,
Grigiante
,
M.
, and
Longo
,
G. A.
, 2009, “
The Use of Biomass Syngas in IC Engines and CCGT Plants: A Comparative Analysis
,”
Appl. Therm. Eng.
,
29
(
16
), pp.
3309
3318
.
28.
Li
,
X. T.
,
Grace
,
J. R.
,
Lim
,
C. J.
,
Watkinson
,
A. P.
,
Chen
,
H. P.
, and
Kim
,
J. R.
, 2004, “
Biomass Gasification in a Circulating Fluidized Bed
,”
Biomass Bioenergy
,
26
(
2
), pp.
171
193
.
29.
Klimantos
,
P.
,
Koukouzas
,
N.
,
Katsiadakis
,
A.
, and
Kakaras
,
E.
, 2009, “
Air-Blown Biomass Gasification Combined Cycles (BGCC): System Analysis and Economic Assessment
,”
Energy
,
34
(
5
), pp.
708
714
.
30.
McIlveen-Wright
,
D. R.
,
Huang
,
Y.
,
Rezvani
,
S.
,
Mondol
,
J. D.
,
Redpath
,
D.
,
Anderson
,
M.
,
Hewitt
,
N. J.
, and
Williams
,
B. C.
, 2010, “
A Techno-Economic Assessment of the Reduction of Carbon Dioxide Emissions Through the Use of Biomass Co-Combustion
,”
Fuel
,
90
(
1
), pp.
11
18
.
31.
Toonssen
,
R.
,
Woudstra
,
N.
, and
Verkooijen
,
A. H. M.
, 2008, “
Exergy Analysis of Hydrogen Production Plants, Based on Biomass Gasification
,”
Int. J. Hydrogen Energy
,
33
(
15
), pp.
4074
4082
.
32.
Chen
,
G.
,
Spliethoff
,
H.
,
Andries
,
J.
,
Glazer
,
M. P.
, and
Yang
,
L. B.
, 2004, “
Biomass Gasification in a Circulating Fluidised Bed-Part I: Preliminary Experiments and Modelling Development
,”
Energy Sources
,
26
(
5
), pp.
485
498
.
33.
Rajasekar
,
E.
,
Murugesan
,
A.
,
Subramanian
,
R.
, and
Nedunchezhian
,
N.
, 2010, “
Review of NOx Reduction Technologies in CI Engines Fuelled With Oxygenated Biomass Fuels
,”
Renewable Sustainable Energy Rev.
,
14
(
7
), pp.
2113
2121
.
34.
Faaij
,
A.
,
Ree
,
R. V.
,
Waldheim
,
L.
,
Olsson
,
E.
,
Oudhuis
,
A.
,
Wijk
,
A. V.
,
Ouwensll
,
C. D.
, and
Turkenbur
,
W.
, 1997, “
Gasification of Biomass Wastes and Residues for Electricity Production
,”
Biomass Bioenergy
,
12
(
6
), pp.
387
407
.
35.
Saravanan
,
N.
, and
Nagarajan
,
G.
, 2009, “
An Insight on Hydrogen Fuel Injection Techniques With SCR System for NOX Reduction in a Hydrogen-Diesel Dual Fuel Engine
,”
Int. J. Hydrogen Energy
,
34
(
21
), pp.
9019
9032
.
36.
Srinivas
,
T.
,
Gupta
,
A. V. S. S. K. S.
, and
Reddy
,
B. V.
, 2008, “
Thermodynamic Modeling and Optimization of MultiPressure Heat Recovery Steam Generator in Combined Power Cycle
,”
J. Sci. Ind. Res.
,
67
(
10
), pp.
827
834
.
37.
Franco
,
A.
, and
Russo
,
A.
, 2002, “
Combined Cycle Plant Efficiency Increase Based on the Optimization of the Heat Recovery Steam Generator Operating Parameters
,”
Int. J. Therm. Sci.
,
41
(
9
), pp.
843
859
.
You do not currently have access to this content.