With emission legislations getting more stringent in order to comply with the responsibilities of environmental obligations, engine manufacturers are turning to explore new avenues to meet the paradox of curtailing particulate matter (PM) and NOx emissions on one hand and maintaining consumer expectations of reduced fuel consumption and increased thermal efficiency on the other. Studies dedicated in mitigating such paradoxical objectives have established novel emission reduction systems such as the diesel particulate filter (DPF) and selective catalytic reduction (SCR) after treatment systems but at the expense of increased complexity of deployment and cost. The present work explores the emission and performance characteristics of an existing four stroke single cylinder engine operating with a predefined flow rate of hydrogen as a dual fuel. The hydrogen was premixed with the incoming air and inducted during the duration of intake valve opening by means of an indigenously developed cam actuated electromechanical timed manifold injection technique. exhaust gas recirculation (EGR) (hot and cooled) technique has been implemented in the present work to reduce NOx emissions which were enriched with the same amount of hydrogen. Research studies carried out on the efficacy of EGR techniques have reported the inherent penalty of increasing the common diesel pollutants of smoke and particulate matter and fuel consumption at the expense of reducing NOx emissions. Trade-off studies in the present work revealed contrary results, where 20% cooled EGR under hydrogen enrichment registered a decrease of 9.2% and 12.3% in NOx emissions at 60% and 80% load as compared to diesel operation while simultaneously retaining a reduction of 4.6% and 1.9% in brake specific energy consumption (BSEC) along with 10% and 8.33% corresponding decrease in smoke emissions and a reduction of 11.30% and 12.31% in total unburnt hydrocarbon (TUHC) emissions. CO emissions were simultaneously decreased by 26.6% and 20.0% while CO2 emissions decreased by 24.5% and 29.1%, respectively, while maintaining 4.8% and 2% increase in brake thermal efficiency and a reduction of 23.3% and 18.95% in specific fuel consumption (SFC) (diesel) simultaneously at the respective loads. Similar trade-off potential, as was evident in the 10% EGR strategies, provide a strong motivation to explore the role of hydrogen as in situ dual fuel solution to counter the conflicting emission and performance requirements of contemporary diesel engines made to operate under EGR.

References

References
1.
Rexeis
,
M.
, and
Hausberger
,
S.
, 2009, “
Trend of Vehicle Emission Levels Until 2020—Prognosis Based on Current Vehicle Measurements and Future Emission Legislation
,”
Atmos. Environ.
,
43
(
31
), pp.
4689
4698
.
2.
Int Panis
,
L.
,
Beckx
,
C.
,
Broekx
,
S.
, De
Vlieger
,
I.
,
Schrooten
,
L.
,
Degraeuwe
,
B.
, and
Pelkmans
,
L.
, 2011, “
Pm, NOx and CO2 Emission Reductions from Speed Management Policies in Europe
,”
Transp. Policy
,
18
(
1
), pp.
32
37
.
3.
Goyal
,
P.
,
Jaiswal
,
N.
,
Kumar
,
A.
,
Dadoo
,
J. K.
, and
Dwarakanath
,
M.
, 2010, “
Air Quality Impact Assessment of NOx and Pm Due to Diesel Vehicles in Delhi
,”
Transp. Res. Part D
,
15
(
5
), pp.
298
303
.
4.
Alkemade
,
U. G.
, and
Schumann
,
B.
, 2006, “
Engines and Exhaust after Treatment Systems for Future Automotive Applications
,”
Solid State Ionics
,
177
(
26–32
), pp.
2291
2296
.
5.
Skalska
,
K.
,
Miller
,
J. S.
, and
Ledakowicz
,
S.
, 2010, “
Trends in NOx Abatement: A Review
,”
Sci. Total Environ.
,
408
(
19
), pp.
3976
3989
.
6.
Castoldi
,
L.
,
Matarrese
,
R.
,
Lietti
,
L.
, and
Forzatti
,
P.
, 2006, “
Simultaneous Removal of NOx and Soots on Pt-Ba/Al2O3 Nsr Catalysts
,”
Appl. Catal., B
,
64
(
1–2
), pp.
25
34
.
7.
Heeb
,
N. V.
,
Zimmerli
,
Y.
,
Czerwinski
,
J.
,
Schmid
,
P.
,
Zennegg
,
M.
,
Haag
,
R.
,
Seiler
,
C.
,
Wichser
,
A.
,
Ulrich
,
A.
,
Honegger
,
P.
,
Zeyer
,
K.
,
Emmenegger
,
L.
,
Mosimann
,
T.
,
Kasper
,
M.
, and
Mayer
,
A.
, 2011, “
Reactive Nitrogen Compounds (RNCS) in Exhaust of Advanced PM-NOx Abatement Technologies for Future Diesel Applications
,”
Atmos. Environ.
,
45
(
18
), pp.
3203
3209
.
8.
Ishida
,
M.
,
Yamamoto
,
S.
,
Ueki
,
H.
, and
Sakaguchi
,
D.
, 2010, “
Remarkable Improvement of NOx-Pm Trade-Off in a Diesel Engine by Means of Bioethanol and EGR
,”
Energy
,
35
(
12
), pp.
4572
4581
.
9.
Song
,
C.-L.
,
Bin
,
F.
,
Tao
,
Z.-M.
,
Li
,
F.-C.
, and
Huang
,
Q.-F.
, 2009, “
Simultaneous Removals of NOx, Hc and Pm from Diesel Exhaust Emissions by Dielectric Barrier Discharges
,”
J. Hazard. Mater.
,
166
(
1
), pp.
523
530
.
10.
Liu
,
J.
,
Zhao
,
Z.
,
Xu
,
C.-M.
,
Duan
,
A.-J.
,
Meng
,
T.
, and
Bao
,
X.-J.
, 2007, “
Simultaneous Removal of NOx and Diesel Soot Particulates over Nanometric La2-Xkxcuo4 Complex Oxide Catalysts
,”
Catal. Today
,
119
(
1–4
), pp.
267
272
.
11.
Sullivan
,
J. A.
,
Keane
,
O.
, and
Cassidy
,
A.
, 2007, “
Beneficial and Problematic Interactions between NOx Trapping Materials and Carbonaceous Particulate Matter
,”
Appl. Catal., B
,
75
(
1–2
), pp.
102
106
.
12.
Theinnoi
,
K.
,
Tsolakis
,
A.
,
Sitshebo
,
S.
,
Cracknell
,
R. F.
, and
Clark
,
R. H.
, 2010, “
Fuels Combustion Effects on a Passive Mode Silver/Alumina HC-SCR Catalyst Activity in Reducing NOx
,”
Chem. Eng. J.
,
158
(
3
), pp.
468
473
.
13.
Szwaja
,
S.
, and
Grab-Rogalinski
,
K.
, 2009, “
Hydrogen Combustion in a Compression Ignition Diesel Engine
,”
Int. J. Hydrogen Energy
,
34
(
10
), pp.
4413
4421
.
14.
Lilik
,
G. K.
,
Zhang
,
H.
,
Herreros
,
J. M.
,
Haworth
,
D. C.
, and
Boehman
,
A. L.
, 2010, “
Hydrogen Assisted Diesel Combustion
,”
Int. J. Hydrogen Energy
,
35
(
9
), pp.
4382
4398
.
15.
Wallace
,
J. S.
, and
Ward
,
C. A.
, 1983, “
Hydrogen as a Fuel
,”
Int. J. Hydrogen Energy
,
8
(
4
), pp.
255
268
.
16.
White
,
C. M.
,
Steeper
,
R. R.
, and
Lutz
,
A. E.
, 2006, “
The Hydrogen-Fueled Internal Combustion Engine: A Technical Review
,”
Int. J. Hydrogen Energy
,
31
(
10
), pp.
1292
1305
.
17.
Haragopala
Rao
,
B.
,
Shrivastava
,
K. N.
, and
Bhakta
,
H. N.
, 1983, “
Hydrogen for Dual Fuel Engine Operation
,”
Int. J. Hydrogen Energy
,
8
(
5
), pp.
381
384
.
18.
Ikegami
,
M.
,
Miwa
,
K.
, and
Shioji
,
M.
, 1982, “
A Study of Hydrogen Fuelled Compression Ignition Engines
,”
Int. J. Hydrogen Energy
,
7
(
4
), pp.
341
353
.
19.
Lee
,
C. S.
,
Lee
,
K. H.
, and
Kim
,
D. S.
, 2003, “
Experimental and Numerical Study on the Combustion Characteristics of Partially Premixed Charge Compression Ignition Engine With Dual Fuel
,”
Fuel
,
82
(
5
), pp.
553
560
.
20.
Mansour
,
C.
,
Bounif
,
A.
,
Aris
,
A.
, and
Gaillard
,
F.
, 2001, “
Gas-Diesel (Dual-Fuel) Modeling in Diesel Engine Environment
,”
Int. J. Therm. Sci.
,
40
(
4
), pp.
409
424
.
21.
Masood
,
M.
,
Ishrat
,
M. M.
, and
Reddy
,
A. S.
, 2007, “
Computational Combustion and Emission Analysis of Hydrogen-Diesel Blends With Experimental Verification
,”
Int. J. Hydrogen Energy
,
32
(
13
), pp.
2539
2547
.
22.
Liu
,
Z.
, and
Karim
,
G. A.
, 1995, “
Knock Characteristics of Dual-Fuel Engines Fuelled With Hydrogen Fuel
,”
Int. J. Hydrogen Energy
,
20
(
11
), pp.
919
924
.
23.
Das
,
L. M.
, 1996, “
Hydrogen-Oxygen Reaction Mechanism and Its Implication to Hydrogen Engine Combustion
,”
Int. J. Hydrogen Energy
,
21
(
8
), pp.
703
715
.
24.
Yi
,
H. S.
,
Min
,
K.
, and
Kim
,
E. S.
, 2000, “
The Optimised Mixture Formation for Hydrogen Fuelled Engines
,”
Int. J. Hydrogen Energy
,
25
(
7
), pp.
685
690
.
25.
Das
,
L. M.
,
Gulati
,
R.
, and
Gupta
,
P. K.
, 2000, “
Performance Evaluation of a Hydrogen-Fuelled Spark Ignition Engine Using Electronically Controlled Solenoid-Actuated Injection System
,”
Int. J. Hydrogen Energy
,
25
(
6
), pp.
569
579
.
26.
Zhenzhong
,
Y.
,
Jianqin
,
W.
,
Zhuoyi
,
F.
, and
Jinding
,
L.
, 2002, “
An Investigation of Optimum Control of Ignition Timing and Injection System in an in-Cylinder Injection Type Hydrogen Fueled Engine
,”
Int. J. Hydrogen Energy
,
27
(
2
), pp.
213
217
.
27.
Hari
Ganesh
,
R.
,
Subramanian
,
V.
,
Balasubramanian
,
V.
,
Mallikarjuna
,
J. M.
,
Ramesh
,
A.
, and
Sharma
,
R. P.
, 2008, “
Hydrogen Fueled Spark Ignition Engine With Electronically Controlled Manifold Injection: An Experimental Study
,”
Renewable Energy
,
33
(
6
), pp.
1324
1333
.
29.
Hirani
,
H.
, and
Manjunatha
,
C. S.
, 2007, “
Performance Evaluation of a Magnetorheological Fluid Variable Valve
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
221
(
1
), pp.
83
93
.
30.
IS 10000(Part 5):1980 (Reaffirmed Aug 2010; Amendments: 1): Methods of tests for internal combustion engines: Part 5 Preparation for tests and measurements for wear.
31.
IS 10000(Part 8):1980 (Reaffirmed Aug 2010; Amendments: 1): Methods of tests for internal combustion engines: Part 8 Performance tests.
32.
IS 10000(Part 6):1980 (Reaffirmed Aug 2010; Amendments:1):Methods of tests for internal combustion engines: Part 6 Recording of test results.
33.
Kim
,
J. N.
,
Kim
,
H. Y.
,
Yoon
,
S. S.
,
Sohn
,
J. H.
, and
Kim
,
C. R.
, 2009, “
Numerical Studies on the Mixing Characteristics of Exhaust Gas Recirculation Gases With Air, and Their Dependence on System Geometries in Four-Cylinder Engine Applications
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
223
(
4
), pp.
585
597
.
34.
Agarwal
,
A. K.
,
Singh
,
S. K.
,
Sinha
,
S.
, and
Shukla
,
M. K.
, 2004, “
Effect of EGR on the Exhaust Gas Temperature and Exhaust Opacity in Compression Ignition Engines
,”
Sadhana
,
29
, pp.
275
284
.
35.
Pradeep
,
V.
, and
Sharma
,
R. P.
, 2007, “
Use of Hot EGR for NOx Control in a Compression Ignition Engine Fuelled With Bio-Diesel from Jatropha Oil
,”
Renewable Energy
,
32
(
7
), pp.
1136
1154
.
36.
Mani
,
M.
, and
Nagarajan
,
G.
, 2009, “
Influence of Injection Timing on Performance, Emission and Combustion Characteristics of a Di Diesel Engine Running on Waste Plastic Oil
,”
Energy
,
34
(
10
), pp.
1617
1623
.
37.
Devan
,
P. K.
, and
Mahalakshmi
,
N. V.
, 2009, “
Performance, Emission and Combustion Characteristics of Poon Oil and Its Diesel Blends in a Di Diesel Engine
,”
Fuel
,
88
(
5
), pp.
861
867
.
38.
Doebelin
,
E. O.
, 2004,
Measurement Systems: Application and Design
,
McGraw-Hill
.
39.
Rakopoulos
,
C. D.
,
Dimaratos
,
A. M.
,
Giakoumis
,
E. G.
, and
Rakopoulos
,
D. C.
, 2010, “
Investigating the Emissions During Acceleration of a Turbocharged Diesel Engine Operating With Bio-Diesel or N-Butanol Diesel Fuel Blends
,”
Energy
,
35
(
12
), pp.
5173
5184
.
40.
Calculation of Precision, Bias, and Method Detection Limit for Chemical and Physical Measurements, Chap. 5
41.
Sher
,
E.
, and
Hacohen
,
Y.
, 1987, “
On the Modeling of a Si 4-Stroke Cycle Engine Fueled With Hydrogen-Enriched Gasoline
,”
Int. J. Hydrogen Energy
,
12
(
11
), pp.
773
781
.
42.
Abdel-Rahman
,
A. A.
, 1998, “
On the Emissions from Internal-Combustion Engines: A Review
,”
Int. J. Energy Res.
,
22
(
6
), pp.
483
513
.
43.
Ladommatos
,
N.
,
Abdelhalim
,
S.
, and
Zhao
,
H.
, 1998, “
Control of Oxides of Nitrogen from Diesel Engines Using Diluents While Minimising the Impact on Particulate Pollutants
,”
Appl. Therm. Eng.
,
18
(
11
), pp.
963
980
.
44.
Sher
,
E.
, 1998,
Handbook of Air Pollution from Internal Combustion Engines: Pollutant Formation and Control
,
Academic Press
,
Chestnut Hill, MA
.
45.
Sahoo
,
B. B.
,
Sahoo
,
N.
, and
Saha
,
U. K.
, “
Effect of Engine Parameters and Type of Gaseous Fuel on the Performance of Dual-Fuel Gas Diesel Engines–a Critical Review
,”
Renewable and Sustainable Energy Rev.
,
13
(
6–7
), pp.
1151
1184
.
46.
Gomes Antunes
,
J. M.
,
Mikalsen
,
R.
, and
Roskilly
,
A. P.
, 2008, “
An Investigation of Hydrogen-Fuelled HCCI Engine Performance and Operation
,”
International Journal of Hydrogen Energy
,
33
(
20
), pp.
5823
5828
.
47.
Das
,
L. M.
, 1991, “
Exhaust Emission Characterization of Hydrogen-Operated Engine System: Nature of Pollutants and Their Control Techniques
,”
Int. J. Hydrogen Energy
,
16
(
11
), pp.
765
775
.
48.
Abd-Alla
,
G. H.
,
Soliman
,
H. A.
,
Badr
,
O. A.
, and
Abd-Rabbo
,
M. F.
, 2001, “
Effects of Diluent Admissions and Intake Air Temperature in Exhaust Gas Recirculation on the Emissions of an Indirect Injection Dual Fuel Engine
,”
Energy Convers. Manage.
,
42
(
8
), pp.
1033
1045
.
49.
Hountalas
,
D. T.
,
Mavropoulos
,
G. C.
, and
Binder
,
K. B.
, 2008, “
Effect of Exhaust Gas Recirculation (EGR) Temperature for Various EGR Rates on Heavy Duty Di Diesel Engine Performance and Emissions
,”
Energy
,
33
(
2
), pp.
272
283
.
50.
Pirouzpanah
,
V.
,
Khoshbakhti Saray
,
R.
,
Sohrabi
,
A.
, and
Niaei
,
A.
, 2007, “
Comparison of Thermal and Radical Effects of EGR Gases on Combustion Process in Dual Fuel Engines at Part Loads
,”
Energy Convers. Manage.
,
48
(
7
), pp.
1909
1918
.
51.
Angrill
,
O.
,
Geitlinger
,
H.
,
Streibel
,
T.
,
Suntz
,
R.
, and
Bockhorn
,
H.
, 2000, “
Influence of Exhaust Gas Recirculation on Soot Formation in Diffusion Flames
,”
Proc. Combus. Inst.
,
28
(
2
), pp.
2643
2649
.
52.
Kazuhiro Akihama
,
Y.
Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature‖
,” SAE Paper No. 2001-01-0655.
53.
Frassoldati
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
, 2006, “
A Wide Range Modeling Study of NOx Formation and Nitrogen Chemistry in Hydrogen Combustion
,”
Int. J. Hydrogen Energy
,
31
(
15
), pp.
2310
2328
.
54.
Heffel
,
J. W.
, 2003, “
NOx Emission and Performance Data for a Hydrogen Fueled Internal Combustion Engine at 1500 Rpm Using Exhaust Gas Recirculation
,”
Int. J. Hydrogen Energy
,
28
(
8
), pp.
901
908
.
55.
Knop
,
V.
,
Benkenida
,
A.
,
Jay
,
S.
, and
Colin
,
O.
, 2008, “
Modelling of Combustion and Nitrogen Oxide Formation in Hydrogen-Fuelled Internal Combustion Engines Within a 3D CFD Code
,”
Int. J. Hydrogen Energy
,
33
(
19
), pp.
5083
5097
.
56.
Sinclair
,
L. A.
, and
Wallace
,
J. S.
, 1984, “
Lean Limit Emissions of Hydrogen-Fueled Engines
,”
Int. J. Hydrogen Energy
,
9
(
1–2
), pp.
123
128
.
57.
Skottene
,
M.
, and
Rian
,
K. E.
, 2007, “
A Study of NOx Formation in Hydrogen Flames
,”
Int. J. Hydrogen Energy
,
32
(
15
), pp.
3572
3585
.
58.
Zeldovich
,
Y. B.
, 1946, “
The Oxidation of Nitrogen in Combustion and Explosions
,”
Acta Physicochim, URSS
,
21
, p.
577
.
59.
Maiboom
,
A.
,
Tauzia
,
X.
, and
Hétet
,
J.-F.
, 2008, “
Experimental Study of Various Effects of Exhaust Gas Recirculation (EGR) on Combustion and Emissions of an Automotive Direct Injection Diesel Engine
,”
Energy
,
33
(
1
), pp.
22
34
.
60.
Safari
,
H.
,
Jazayeri
,
S. A.
, and
Ebrahimi
,
R.
, 2009, “
Potentials of NOx Emission Reduction Methods in Si Hydrogen Engines: Simulation Study
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
1015
1025
.
61.
Selim
,
M. Y. E.
, 2003, “
Effect of Exhaust Gas Recirculation on Some Combustion Characteristics of Dual Fuel Engine
,”
Energy Convers. Manage.
,
44
(
5
), pp.
707
721
.
62.
Subramanian
,
V.
,
Mallikarjuna
,
J. M.
, and
Ramesh
,
A.
, 2007, “
Intake Charge Dilution Effects on Control of Nitric Oxide Emission in a Hydrogen Fueled Si Engine
,”
Int. J. Hydrogen Energy
,
32
(
12
), pp.
2043
2056
.
63.
Kannan
,
G. R.
, and
Anand
,
R.
, 2011, “
Experimental Investigation on Diesel Engine With Diestrol-Water Micro Emulsions
,”
Energy
,
36
(
3
), pp.
1680
1687
.
64.
Kannan
,
G. R.
,
Karvembu
,
R.
, and
Anand
,
R.
, 2011, “
Effect of Metal Based Additive on Performance Emission and Combustion Characteristics of Diesel Engine Fuelled With Biodiesel
,”
Appl. Energy
,
88
(
11
), pp.
3694
3703
.
65.
Pandian
,
M.
,
Sivapirakasam
,
S. P.
, and
Udayakumar
,
M.
, 2011, “
Investigation on the Effect of Injection System Parameters on Performance and Emission Characteristics of a Twin Cylinder Compression Ignition Direct Injection Engine Fuelled With Pongamia Biodiesel-Diesel Blend Using Response Surface Methodology
,”
Appl. Energy
,
88
(
8
), pp.
2663
2676
.
66.
Rehman
,
A.
,
Phalke
,
D. R.
, and
Pandey
,
R.
, 2011, “
Alternative Fuel for Gas Turbine: Esterified Jatropha Oil-Diesel Blend
,”
Renewable Energy
,
36
(
10
), pp.
2635
2640
.
67.
See supplemental material at http://dx.doi.org/10.1115/1.4005246http://dx.doi.org/10.1115/1.4005246 for tables and Appendix.
You do not currently have access to this content.