Most of the current production cost in algae biodiesel plants utilizing photobioreactors comes from the high energy required for pumping, CO2 transfer, mixing, and harvesting. Since pumping affects the mixing and CO2 transfer, which are the main factors in algae productivities, solutions to reduce the required energy for pumps can significantly make algae biodiesel production more economically feasible. An investigation on the effect of Scenedesmus obliquus’s growth from low to high biomass concentration inside a horizontal tubular photobioreactor to determine the impact that it has on hydrodynamic performances, which will affect cost and production efficiency, was performed. As the biomass concentration increased, the algal culture was found to remain Newtonian. Additionally, the biomass concentration (expressed in cell density) was found to have lower viscosity even at the highest concentrations evaluated at 2.48 × 108 cell/ml (1.372 × 10−3 ± 1.32 × 10−4 Pa s) compared to the Modified Bold’s 3N medium (1.408 × 10−3 ± 9.41 × 10−5 Pa s). Furthermore, the total energy consumption does not appear to depend on the S. obliquus biomass concentrations, but rather on the medium the algae grows in. The rheological properties of autotrophic algae will not have significant impact on energy requirements until technology improves so that the concentrations reach those of heterotrophic algae.

References

References
1.
Meiners
,
R. E.
,
Morriss
,
A.
,
Bogart
,
W. T.
, and
Dorchak
,
A.
, 2011,
The False Promise of Green Energy
,
Cato Institute
,
Washington, D.C.
, pp.
47
71
.
2.
Curtiss
,
P. S.
, and
Kreider
,
J. F.
, 2009, “
Algaculture as a Feedstock Source for Biodiesel Fuel: A Life Cycle Analysis
,”
Proceedings of ASME 2009 3rd International Conference on Energy Sustainability
, July 19–23, 2009,
San Francisco, California, USA
, Vol.
1
, pp.
171
179
.
3.
Chisti
,
Y.
, 2007, “
Biodiesel From Microalgae
,”
Biotechnol. Adv.
,
25
(
3
), pp.
294
306
.
4.
Chisti
,
Y.
, 2008, “
Biodiesel From Microalgae Beats Bioethanol
,”
Trends Biotechnol.
,
26
(
3
), pp.
126
131
.
5.
Becker
,
E. W.
, 1994,
Microalgae: Biotechnology and Microbiology (Cambride Studies in Biotechnology)
,
1st ed.
,
N. H. C.
Sir James Baddiley
,
I. J.
Higgins
, and
W. G.
Potter
, eds.,
Cambridge University Press
,
New York
.
6.
Das
,
P.
, and
Obbard
,
J. P.
, 2011, “
Incremental Energy Supply for Microalgae Culture in a Photobioreactor
,”
Bioresour. Technol.
,
102
(
3
), pp.
2973
2978
.
7.
Lehr
,
F.
, and
Posten
,
C.
, 2009, “
Closed Photo-Bioreactors as Tools for Biofuel Production
,”
Curr. Opin. Biotechnol.
,
20
(
3
), pp.
280
285
.
8.
Posten
,
C.
, 2009, “
Design Principles of Photo-Bioreactors for Cultivation of Microalgae
,”
Eng. Life Sci.
,
9
(
3
), pp.
165
177
.
9.
Kunjapur
,
A. M.
, and
Eldridge
,
R. B.
, 2010, “
Photobioreactor Design for Commercial Biofuel Production From Microalgae
,”
Ind. Eng. Chem. Res.
,
49
(
8
), pp.
3516
3526
.
10.
Ho
,
S. H.
,
Chen
,
W. M.
, and
Chang
,
J. S.
, 2010, “
Scenedesmus obliquus CNW-N as a Potential Candidate for CO(2) Mitigation and Biodiesel Production
,”
Bioresour. Technol.
,
101
(
22
), pp.
8725
8730
.
11.
Mandal
,
S.
, and
Mallick
,
N.
, 2009, “
Microalga Scenedesmus obliquus as a Potential Source for Biodiesel Production
,”
Appl. Microbiol. Biotechnol.
,
84
(
2
), pp.
281
291
.
12.
Carlozzi
,
P.
,
Ena
,
A.
, and
Carnevale
,
S.
, 2005, “
Hydrodynamic Alterations During Cyanobacteria (Arthrospira platensis) Growth From Low to High Biomass Concentration Inside Tubular Photobioreactors
,”
Biotechnol. Prog.
,
21
(
2
), pp.
416
422
.
13.
Wu
,
Z.-Y.
, and
Shi
,
X.-M.
, 2008, “
Rheological Properties of Chlorella pyrenoidosa Culture Grown Heterotrophically in a Fermentor
,”
J. Appl. Phycol.
,
20
(
3
), pp.
279
282
.
14.
Basaca-Loya
,
A.
,
Burboa
,
M.
,
Valdez
,
M. A.
,
Gamez
,
R.
,
Goycoolea
,
F. M.
, and
Gutierrez-Millan
,
L. E
, 2008, “
Aggregation Behavior and Rheology of Culture Broths of Rhodosorus marinus
,”
Rev. Mex. Fis.
,
54
(
2
), pp.
119
126
.
15.
Michiel
,
H. A.
,
Goot
,
A. J.
,
Norsker
,
N.-H.
, and
Wijffels
,
R. H.
, 2010, “
Effects of Shear Stress on the Microalgae Chaetoceros muelleri
,”
Bioprocess Biosyst. Eng.
,
33
(
8
), pp.
921
927
.
16.
Fernandes
,
H. L.
,
Lupi
,
F.
,
Tomé
,
M. M.
,
Sá-Correia
,
I.
, and
Novais
,
J. M.
, 1991, “
Rheological Behavior of the Culture-Medium During Growth of the Microalga Botryococcus-braunii
,”
Bioresour. Technol.
,
38
(
2–3
), pp.
133
136
.
17.
Johnson
,
A. T.
, 1999,
Biological Process Engineering: An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems
,
Wiley
,
Canada
.
18.
Murphy
,
T. E.
, and
Berberoglu
,
H.
, 2011, “
Transient Analysis of Microorganism Temperature and Evaporative Losses in an Algae Biofilm Photobioreactor
,”
ASME Conference Proceedings
, pp.
T10003
–T10003-
10
.
19.
Gudin
,
C.
, and
Chaumont
,
D.
, 1991, “
Cell Fragility—The Key Problem of Microalgae Mass Production in Closed Photobioreactors
,”
Bioresour. Technol.
,
38
(
2–3
), pp.
145
151
.
20.
Grobbelaar
,
J. U.
, 1994, “
Turbulence in Mass Algal Cultures and the Role of Light-Dark Fluctuations
,”
J. Appl. Phycol.
,
6
(
3
), pp.
331
335
.
21.
Wijffels
,
R. H.
, 2010, “
Algae for Energy
,”
6th International Conference on Renewable Resources and Biorefineries
,
Wageningen University/Düsseldorf
,
Germany
.
22.
Hulatt
,
C. J.
, and
Thomas
,
D. N.
, 2011, “
Energy Efficiency of an Outdoor Microalgal Photobioreactor Sited at Mid-Temperate Latitude
,”
Bioresour. Technol.
,
102
(
12
), pp.
6687
6695
.
23.
Burgess
,
G.
,
Fernandez-Velasio
,
J. G.
, and
Lovegrove
,
K.
, 2007, “
Materials, Geometry, Net Energy Ratio of Tubular Photobioreactor for Microalgal Hydrogen Production
,”
Int. J. Hydrogen Energy
,
32
(
9
), pp.
1225
1234
.
24.
Ugwu
,
C. U.
,
Ogbonna
,
J. C.
, and
Tanaka
,
H.
, 2003, “
Design of Static Mixers for Inclined Tubular Photobioreactors
,”
J. Appl. Phycol.
,
15
(
2–3
), pp.
217
223
.
25.
Mirón
,
A. S.
,
Gómez
,
A. C.
,
Camacho
,
F. G.
,
Grima
,
E. M.
, and
Chisti
,
Y.
, 1999, “
Comparative Evaluation of Compact Photobioreactors for Large-Scale Monoculture of Microalgae
,”
J. Biotechnol.
,
70
(
1–3
), pp.
249
270
.
26.
Grima
,
E. M.
,
Belarbi
,
E.-H.
,
Fernández
,
F. G. A.
,
Medina
,
A. R.
, and
Chisti
,
Y.
, 2003, “
Recovery of Microalgal Biomass and Metabolites: Process Options and Economics
,”
Biotechnol. Adv.
,
20
(
7–8
), pp.
491
515
.
27.
Grima
,
E. M.
,
Fernández
,
F. G. A.
,
Camacho
,
F. G.
, and
Chisti
,
Y.
, 1999, “
Photobioreactors: Light Regime, Mass Transfer, and Scaleup
,”
J. Biotechnol.
,
70
(
1–3
), pp.
231
247
.
You do not currently have access to this content.