There are much coal with low content of volatile matter (Vad < 20%), high content of ash (Aad > 50%), low heating caloric (∼10,000 kJ/kg) in China. It is very important to study pyrolysis performance of the coal to ensure high efficiency of utilization and low pollution emissions. In this paper, we study the pyrolysis reaction details of different types of this coal from different regions of China under different pyrolysis pressures, temperatures, particle sizes, and heating rates by thermo-gravimetry (TG) method. The pyrolysis characteristic temperatures and the characteristic index of volatilization matter released of coal gangue (CG) are obtained in this work. In addition, the detailed process of mechanism and kinetic parameters of pyrolysis are presented. The results show that many factors have an obvious influence on the pyrolysis reaction of the coal. The pyrolysis process of the coal is comprised of two stages. At the primary stage(t < 560 °C), the pyrolysis reaction is dominated by the diffusion rate of volatile matter because of the high ash content, which is the global symmetry diffusion mechanism, and the volatile matter of this stage is more difficult to come out and a high pyrolysis activation energy is observed. With increasing pyrolysis temperature, the pyrolysis reaction is moving into diffusion limitation, the volatile matter is released plentifully, and the low activation energy is found. At the second stage (t > 560 °C), the pyrolysis reaction is governed by the tar-released reaction and the pyrolysis reaction order is 1.5. The high activation energy is also observed for the second stage pyrolysis process.

References

References
1.
Telfer
,
M.
, and
Zhang
,
D.-K.
, 2001, “
The Influence of Water-Soluble and Acid-Soluble Inorganic Matter on Sulphur Transformations During Pyrolysis of Low-Rank Coals
,”
Fuel
,
80
(
14
), pp.
2085
2098
.
2.
Avid
,
B.
,
Purevsuren
,
B.
,
Born
,
M.
,
Dugarjav
,
J.
,
Davaajav
,
Ya.
, and
Tuvshinjargal
,
A.
, 2002, “
Pyrolysis and TG Analysis of Shivee Ovoo Coal From Mongolia
,”
J. Therm. Anal. Calorim.
,
68
(
3
), pp.
877
885
.
3.
Patrick
,
J. W.
,
Walker
,
A.
, and
Svenja
,
H.
, 2002, “
The Effect of Coal Particle Size on Pyrolysis and Steam Gasification
,”
Fuel
,
81
(
5
), pp.
531
537
.
4.
Ozbas
,
K. E.
,
Kok
,
M. V.
, and
Hicyilmaz
,
C.
, 2002, “
Comparative Kinetic Analysis of Raw and Cleaned Coals
,”
J. Therm. Anal. Calorim.
,
69
(
2
), pp.
541
549
.
5.
Kok
,
M. V.
, 2002, “
Thermal Analysis Applications in Fossil Fuel Science: Literature Survey
,”
J. Therm. Anal. Calorim.
,
68
(
3
), pp.
1061
1077
.
6.
Strezov
,
V.
,
Lucas
,
J. A.
,
Evans
,
T. J.
, and
Strezov
,
L.
, 2004, “
Effect of Heating Rate on the Thermal Properties and Devolatilisation of Coal
,”
J. Therm. Anal. Calorim.
,
78
(
2
), pp.
385
397
.
7.
Duz
,
M. Z.
,
Tonbul
,
Y.
,
Baysal
,
A.
,
Akba
,
O.
,
Saydut
,
A.
, and
Hamamci
,
C.
, 2005, “
Pyrolysis Kinetics and Chemical Composition of Hazro Coal According to the Particle Size
,”
J. Therm. Anal. Calorim.
,
81
, pp.
395
398
.
8.
Morris
,
R. M.
, 1993, “
Effect of Particle Size and Temperature on Evolution Rate of From Coal
,”
J. Anal. Appl. Pyrolysis
,
27
(
2
), pp.
97
107
.
9.
Strezov
,
V.
,
Lucas
,
J. A.
,
Evans
,
T. J.
, and
Strezov
,
L.
, 2004, “
Effect of Heating Rate on the Thermal Properties and Devolatilisation of Coal [J]
,”
J. Therm. Anal. Calorim.
,
78
(
2
), pp.
385
397
.
10.
Safarova
,
M.
,
Kusy
,
J.
, and
Andel
,
L.
, 2005, “
Pyrolysis of Brown Coal Under Different Process Conditions
,”
Fuel
,
84
, pp.
2280
2285
.
11.
Liu
,
Q. R.
,
Hu
,
H. Q.
,
Zhou
,
Q.
,
Zhu
,
S. W.
, and
Chen
,
G. H.
, 2004, “
Effect of Inorganic Matter on Reactivity and Kinetics of Coal Pyrolysis [J]
Fuel
,
83
(
6
), pp.
713
718
.
12.
Porada
,
S.
, 2004, “
The Influence of Elevated Pressure on the Kinetics of Evolution of Selected Gaseous Products During Coal Pyrolysis [J]
Fuel
,
83
(
7–8
), pp.
1071
1078
.
13.
Arenillas
,
A.
,
Rubiera
,
F.
,
Pis
,
J. J.
,
Cuestaa
,
M. J.
,
Iglesiasb
,
M. J.
,
Jiménezc
,
A.
, and
Suárez-Ruiza
,
I.
, 2003, “
Thermal Behaviour During the Pyrolysis of Low Rank Perhydrous Coals [J]
J. Anal. Appl. Pyrolysis
68–69
(
8
), pp.
371
385
.
14.
Belen Folgueras
,
M.
,
Marýa Dýaz
,
R.
, and
Jorge
,
X.
, 2005, “
Pyrolysis of Blends of Different Types of Sewage Sludge With One Bituminous Coal [J]
,”
Energy
,
30
(
7
), pp.
1079
1091
.
15.
Casal
,
M. D.
,
Canga
,
C. S.
, and
Dýez
,
M. A.
, 2005, “
Low-Temperature Pyrolysis of Coals With Different Coking Pressure Characteristics [J]
,”
J. Anal. Appl. Pyrolysis
,
74
(
1–2
), pp.
96
103
.
16.
Zajusz-Zubek
,
E.
, and
Konieczyn,′ski
,
J.
, 2003, “
Dynamics of Trace Elements Release in a Coal Pyrolysis Process [J]
,”
Fuel
,
82
(
10
), pp.
1281
1290
.
17.
Migliavacca
,
G.
,
Parodi
,
E.
, and
Bonfanti
,
L.
, 2005, “
A General Mathematical Model of Solid Fuels Pyrolysis [J]
,”
Energy
,
30
(
8
), pp.
1453
1468
.
18.
Pedersen
,
L. S.
,
Nielsen
,
H. P.
,
Kiil
,
S.
,
Hansen
,
L. A.
,
Dam-Johansen
,
K.
,
Kilsig
,
F.
,
Christensen
,
J.
, and
Jespersen
,
P.
, 1996, “
Full-Scale Co-Firing of Straw and Coal [J]
,”
Fuel
,
75
(
13
), pp.
1584
1590
.
19.
Heinzel
,
T.
,
Siegle
,
V.
,
Spliethoff
,
H.
, and
Hein
,
K. R. G.
, 1998, “
Investigation of Slagging in Pulverized Fuel Co-Combustion of Biomass and Coal at a Pilot-Scale Test Facility [J]
,”
Fuel Process. Technol.
,
54
(
1–3
), pp.
109
125
.
20.
Meesri
,
C.
, and
Moghtaderi
,
B.
, 2002, “
Lack of Synergetic Effects in the Pyrolytic Characteristics of Woody Biomass/Coal Blends Under Low and High Heating Rate Regimes [J]
,”
Biomass Bioenergy
,
23
(
1
), pp.
55
66
.
21.
Nikkah
,
K. M.
,
Bakhshi
,
N. N.
, and
MacDonald
,
D. G.
, 1993,
Co-Pyrolysis of Various Biomass Materials and Coals in a Quartz Semi-Batch Reactor [C]
D. L.
Klass
, ed.,
Energy from Biomass and Waste XVI, Institute of Gas Technology
,
Chicago
, pp.
857
902
.
22.
Vuthaluru
,
H. B.
, 2003, “
Thermal Behaviour of Coal/Biomass Blends During Co-Pyrolysis [J]
,”
Fuel Process. Technol.
,
85
(
2–3
), pp.
141
155
.
23.
Pan
,
T. G.
,
Velo
,
E.
, and
Puigjaner
,
L.
, 1996, “
Pyrolysis of Blends of Biomass With Poor Coals [J]
,”
Fuel
,
75
(
4
), pp.
412
418
.
24.
Zaror Claudio
,
A.
,
Hutchings Ian
,
S.
,
Pyle
D. Leo
,
Stiles Hugh
,
N.
, and
Rafael
,
K.
, 1985, “
Secondary Char Formation in the Catalytic Pyrolysis of Biomass [J]
,”
Fuel
,
64
(
7
), pp.
990
994
.
25.
Mansaray
,
K. G.
, and
Ghaly
,
A. E.
, 1999, “
Kinetics of the Thermal Degradation of Rice Husks in Nitrogen Atmosphere [J]
,”
Energy Sources
,
21
(
9
), pp.
773
784
.
26.
Vamvuka
,
D.
,
Kakarasb
,
E.
, and
Kastanaki
,
E.
, 2003, “
Pyrolysis Characteristics and Kinetics of Biomass Residuals Mixtures With Lignite [J]
,”
Fuel
,
82
(
15–17
), pp.
1949
1960
.
27.
Alonso
,
M. J. G.
,
Alvarez
,
D.
,
Borrego
,
A. G.
,
Menendez
,
R.
, and Marban, G., 2001, “
Systematic Effects of Coal Rank and Type on the Kinetics of Coal Pyrolysis
,
Energy Fuels
,
15
(
2
), pp.
413
428
.
28.
Laurent
,
J.
,
Christophe
,
B.
, and
Radwan
,
K.
, 1990, “
Devolatilization Study of the Low Rank, French, Gardanne coal. Effect of Volatile Matter Post Pyrolysis
,”
Fuel
,
69
(
5
), pp.
617
623
.
29.
Shevkoplyas
,
V. N.
, and
Saranchuk
,
V. I.
, 2000, “
Impregnation Effect on Low and Middle Rank Coals Structure Reorganization and Their Behavior During Pyrolysis
,”
Fuel
,
79
(
5
), pp.
557
565
.
30.
Friebel
,
J.
, and
Koepsel
,
R. F. W.
, 1999, “
Fate of Nitrogen During Pyrolysis of German Low Rank Coals—A Parameter Study
,”
Fuel
,
78
(
8
), pp.
923
932
.
31.
Geoffrey
,
F.
,
James Richard
,
G.
,
Ladner William
,
R.
, and
Newman John
,
O. H.
, 1984, “
Structural Differences in the Tars and Chars From the Pyrolysis of Coals of Different Rank in Hydrogen and in Nitrogen
,”
Fuel
,
63
(
7
), pp.
897
903
.
32.
Arenillas
,
A.
,
Rubiera
,
F.
,
Pevida
,
C.
, and
Pis
,
J. J.
, 2001, “
A Comparison of Different Methods for Predicting Coal Devolatilisation Kinetics
,”
J. Anal. Appl. Pyrol.
,
58–59
(
1
), pp.
685
701
.
33.
De La Puente
,
G.
,
Iglesias
,
M. J.
,
Fuente
,
E.
, and
Pis
J. J.
, 1998, “
Changes in the Structure of Coals of Different Rank Due to Oxidation—Effects on Pyrolysis Behaviour
,
J. Anal. Appl. Pyrolysis
,
47
(
1
), pp.
33
42
.
34.
Cen
,
K. F.
, 2000, “
Advanced Combustion Subject [M]
,” Press of Zhejiang University, Zhejiang, pp.
252
256
.
35.
Alonso
,
M. J. G.
,
Borrego
,
A. G.
,
Alvarez
,
D.
,
Parra
,
J. B.
, and
Menendez
,
R.
, 2001, “
Influence of Pyrolysis Temperature on Char Optical Texture and Reactivity [J]
,”
J. Anal. Appl. Pyrolysis
,
58–59
(
4
), pp.
887
909
.
36.
Li
,
X.
,
Matuschek
,
G.
,
Herrera
,
M.
,
Wang
,
H.
, and
Kettrup
,
A.
, 2003, “
Investigation of Pyrolysis of Chinese Coals Using Thermal Analysis/Mass Spectrometry [J]
,”
J. Therm. Calorim.
,
71
(
2
), pp.
601
612
.
37.
Guo
,
J.
, and
Zeng
,
H.
, 1994, “
Thermogravimetric Study on Pyrolysis Characteritic and Pyrolysis Mechanism of Mixed Coals [J]
,”
Technol. Boiler
,
8
, pp.
5
7
(in Chinese).
38.
Zhu
,
Q. Y.
,
Zhao
,
G. B.
,
Ruan
,
G. J.
,
Qin
,
Y. K.
,
Huang
,
Y. M.
, and
Yu
,
H. B.
, 1996, “
The Effect of Heating Rate on Final Volatile Yield of Pulverized Coal Devolatilization [J]
,”
J. Harbin Inst. Technol.
,
3
(
28
), pp.
35
39
(in Chinese).
You do not currently have access to this content.