In the currently reported work, three typical mixtures of H2, CO, CH4, CO2, and N2 have been considered as representative of the producer gas (syngas) coming from biomass gasification. Syngas is being recognized as a viable energy source worldwide, particularly for stationary power generation. However, there are gaps in the fundamental understand of syngas combustion characteristics, especially at elevated pressures that are relevant to practical combustors. In this work, constant volume spherical expanding flames of three typical syngas compositions resulting from biomass gasification have been employed to measure the laminar burning velocities for pressures ranges between 1.0 and 20 bar tanking into account the stretch effect on burning velocity. Over the ranges studied, the burning velocities are fit by a functional form Su=Su0(T/T0)α(P/P0)β; and the dependencies of α and β upon the equivalence ratio of mixture are also given. Conclusion can be drawn that the burning velocity decreases with the increase of pressure. In opposite, an increase in temperature induces an increase of the burning velocity. The higher burning velocity value is obtained for downdraft syngas. This result is endorsed to the higher heat value, lower dilution and higher volume percentage of hydrogen in the downdraft syngas.

References

References
1.
Wu
,
K. T.
,
Lee
,
H. T.
,
Juch
,
C. I.
,
Wan
,
H. P.
,
Shim
,
H. S.
,
Adams
,
B. R.
, and
Chen
,
S. L.
, 2004, “
Study of Syngas Co-Firing and Reburning in a Coal Fired Boiler
,”
Fuel
,
83
, pp.
1991
2000
.
2.
Andrews
,
G. E.
, and
Bradley
,
D.
, 1972, “
Determination of Burning Velocities: A Critical Review
,”
Combust. Flame
,
18
, pp.
133
153
.
3.
Yamaoka
and
H.
Tsuji
, 1992, “
An Anomalous Behavior of Methane–Air and Methane–Hydrogen–Air Flames Diluted With Nitrogen in a Stagnant Flow
,”
Proc. Combust. Inst.
,
24
, pp.
145
152
.
4.
Yu
,
G.
,
Law
,
C. K.
,
Wu
,
C. K.
, 1986, “
Laminar Flame Speeds of Hydrocarbon +Air Mixtures With Hydrogen Addition
,”
Combust. Flame
,
63
, pp.
339
347
.
5.
Van Maaren
,
A.
,
Thung
,
D. S.
,
Goey
,
L. P. H.
, “
Measurement of Flame Temperature and Adiabatic Burning Velocity of Methane/Air Mixtures
,”
Combust. Sci. Technol.
,
96
, pp.
327
344
.
6.
Haniff
,
M. S.
,
Melvin
,
A.
,
Smith
,
D. B.
, and
Williams
,
A.
, 1989, “
Analytical and Experimental Studies of the Stability Limits of Methane and SNG Mixtures With Air
,”
J. Inst. Energy
,
62
, pp.
229
236
.
7.
Metghalchi
,
M.
, and
Keck
,
J. C.
, 1980, “
Laminar Burning Velocity of Propane-Air Mixtures at High Temperature and Pressure
,”
Combust. Flame
,
38
, pp.
143
154
.
8.
Gu
,
X. J.
,
Haq
,
M. Z.
, and
Lawes
,
M.
, 2000, “
Laminar Burning Velocity and Markstein Lengths of Methane–Air Mixtures
,”
Combust. Flame
,
121
, pp.
41
58
.
9.
Vagelopoulos
,
C. M.
, and
Egolfopoulos
,
F. N.
, 1994, “
Laminar Flame Speeds and Extinction Strain Rates of Mixtures of Carbon Monoxide With Hydrogen, Methane, and Air
,”
Proc. Combust. Inst.
,
25
, pp.
1317
1323
.
10.
Sung
,
C. J.
,
Huang
,
Y.
, and
Eng
,
J. A.
, 2001, “
Effects of Reformer Gas Addition on the Laminar Flame Speeds and Flammability Limits of n-Butane and Iso-Butane Flames
,”
Combust. Flame
,
126
, pp.
1699
1713
.
11.
Law
,
C. K.
,
Jomaas
,
G.
, and
Bechtold
,
J. K.
, 2005, “
Cellular Instabilities of Expanding Hydrogen/Propane Spherical Flames at Elevated Pressures: Theory and Experiment
,”
Proc. Combust. Inst.
,
30
, pp.
159
167
.
12.
Prathap
,
C.
,
Ray
,
A.
, and
Ravi
,
M. R.
, 2008, “
Investigation of Nitrogen Dilution Effects on the Laminar Burning Velocity and Flame Stability of Syngas Fuel at Atmospheric Condition
,”
Combust. Flame
,
155
, pp.
145
160
.
13.
Natarajan
J.
,
Lieuwen
T.
, and
Seitzman
J.
, 2007, “
Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Temperature, and Pressure
,”
Combust. Flame
,
151
, pp.
104
119
.
14.
Dam
,
B.
,
Ardha
,
V.
, and
Choudhuri
,
A.
, 2010, “
Laminar Flame Velocity of Syngas Fuels
,”
J. Energy Resour. Technol.
,
132
(
4
), p.
044505
.
15.
Bridgwater
,
A.V.
, 1995, “
The Technical and Economic Feasibility of Biomass Gasification for Power Generation
,”
Fuel
,
74
, pp.
631
653
.
16.
Matalon
,
M.
, 1983, “
On Flame Stretch
,”
Combust. Sci. Technol.
,
31
, pp.
169
181
.
17.
Clavin
,
P.
, 1985, “
Dynamic Behavior of Premixed Flame Fronts in Laminar and Turbulent Flows
,”
Prog. Energy Combust. Sci.
,
11
, pp.
1
59
.
18.
Markstein
,
G. H.
, 1964,
Nonsteady Flame Propagation
,
Pergamon
,
Oxford
.
19.
Lewis
,
B.
, and
von Elbe
,
G.
, 1934, “
Determination of the Speed of Flames and the Temperature Distribution in a Spherical Bomb From Time-Pressure Explosion Records
,”
J. Chem. Phys.
,
2
, pp.
283
290
.
20.
Chris Morley, 2005, “Gaseq: A Chemical Equilibrium Program,” Available from: www.arcl02.dsl.pipex.com
21.
Saeed
,
K.
, and
Stone
,
C. R.
, 2004, “
Measurements of the Laminar Burning Velocity for Mixtures of Methanol and Air From a Constant-Volume Vessel Using a Multizone Model
,”
Combust. Flame
,
139
, pp.
152
166
.
22.
Fiock
,
E. F.
, and
Marvin
,
C. F.
, 1937, “
The Measurement of Flame Speeds
,”
Chem. Rev.
,
21
, pp.
367
387
.
23.
Rakotoniaina
Jean-Elysée
, 1998,
Études de la célérité fondamentale de la flamme laminaire de mélanges préalables par la méthode de la chambre de combustion sphérique
, Ph.D. thesis, Univ. of Poitiers, France.
You do not currently have access to this content.