A computational model of a hybrid pressurized solid oxide fuel cell (PSOFC) generator/gas turbine power plant is developed using classical thermodynamic analysis in conjunction with electromechanical, fluid-mechanical, and heat transfer simulations in the fuel cell by a commercial software. The thermodynamic analysis is based on energy and exergy balances. A case study is reported in which the plant contains a Siemens–Westinghouse PSOFC generator and a Solar Turbines Mercury-50 gas turbine. Among the calculated quantities for a range of fuel cell current are the plant output power, first-law efficiency, and exergetic efficiency.

1.
Hirschenhofer
,
J. H.
,
Stauffer
,
D. B.
,
Engleman
,
R. R.
, and
Klett
,
M. G.
, 1998,
Fuel Cell Handbook
,
4th Ed.
,
U.S. Department of Energy, National Energy Technology Laboratory
,
Morgantown, WV
.
2.
Rao
,
A. D.
, and
Samuelsen
,
G. S.
, 2002, “
Analysis Strategies for Tubular Solid Oxide Fuel Cell Based Hybrid Systems
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
503
509
.
3.
Lundberg
,
W. L.
,
Veyo
,
S. E.
, and
Moeckel
,
M. D.
, 2003, “
A High-Efficiency Solid Oxide Fuel Cell Hybrid Power System Using the Mercury 50 Advanced Turbine System Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
51
58
.
4.
Stiller
,
C.
,
Mathisen
,
O.
,
Seljebo
,
S.
,
Bolland
,
O.
,
Karoliussen
,
H.
, and
Thorud
,
B.
, 2003, “
Simulation-Based Comparison of Combined SOFC/GT Cycles With Flat-Plate and Tubular Fuel Cell Models
,”
Proceedings of the Fuel Cell Seminar
, Miami, FL.
5.
Li
,
P. W.
, and
Chyu
,
M. K.
, 2005, “
Electrochemical and Transport Phenomena in Solid Oxide Fuel Cells
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1344
1362
.
6.
Magistri
,
L.
,
Traverse
,
A.
,
Ceruttim
,
F.
,
Bozzolo
,
M.
,
Costamagna
,
P.
, and
Massardo
,
A. F.
, 2005, “
Modeling of Pressurized Hybrid Systems Based on Integrated Planar Solid Oxide Fuel Cell (IP-SOFC) Technology
,”
Fuel Cells
0532-7822,
5
, pp.
80
96
.
7.
Dixon
,
S. L.
, 1998,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
4th Ed.
,
Butterworth-Heinemann
,
Boston, MA
.
8.
Janardhanan
,
V. M.
, and
Deutschmann
,
O.
, 2006, “
CFD Analysis of a Solid Oxide Fuel Cell With Internal Reforming: Coupled Interaction of Transport, Heterogeneous Catalysis and Electrochemical Processes
,”
J. Power Sources
0378-7753,
162
, pp.
1192
1202
.
9.
Liu
,
J.
, and
Barnett
,
S. A.
, 2003, “
Operation of Anode-Supported Solid Oxide Fuel Cells on Methane and Natural Gas
,”
Solid State Ionics
0167-2738,
158
, pp.
11
16
.
10.
Ward
,
M. E.
, and
Stephenson
,
M. D.
, 1999, “
The Primary Surface Recuperator—Durability and Applications
,”
Proceedings of the International Gas Turbine Congress
, Kobe, Japan.
11.
Lundberg
,
W. L.
,
Israelson
,
G. A.
,
Moeckel
,
M. D.
,
Veyo
,
S. E.
,
Holmes
,
R. A.
,
Zafred
,
P. R.
,
King
,
J. E.
, and
Kothmann
,
R. E.
, 2001, “
A High Efficiency PSOFC/ATS-Gas Turbine Power System
,” Siemens–Westinghouse Report for the U.S. Department of Energy.
12.
Rase
,
H. F.
, 2000,
Handbook of Commercial Catalysts
,
CRC
,
Boca Raton, FL
.
13.
Ramaprabhu
,
V.
, and
Roy
,
R. P.
, 2004, “
A Computational Model of a Combined Cycle Power Generation Unit
,”
ASME J. Energy Resour. Technol.
0195-0738,
126
, pp.
231
240
.
14.
Fluent Inc.
, 2006, FLUENT 6.3 user documentation manual.
15.
Jabbari
,
F.
,
Brouwer
,
J.
,
Roberts
,
R.
, and
Samuelsen
,
G. S.
, 2003, “
Dynamic Modeling and Control of Fuel Cell Hybrid Systems
,”
Third Annual D.O.E./U.N. Hybrid Conference and Workshop
.
16.
Rivkin
,
S. L.
, 1988,
Thermodynamic Properties of Gases
,
Hemisphere
,
Washington, DC
.
17.
Irvine
,
T. F.
, and
Liley
,
P. E.
, 1983,
Steam and Gas Tables With Computer Equations
,
Academic
,
New York
.
18.
Moran
,
M. J.
, and
Shapiro
,
H. N.
, 1999,
Fundamentals of Engineering Thermodynamics
,
4th Ed.
,
Wiley
,
New York
.
19.
Walsh
,
P. P.
, and
Fletcher
,
P.
, 1998,
Gas Turbine Performance
,
Blackwell Science
,
Malden, MA
.
You do not currently have access to this content.