Using the GAUSSIAN 03 (Frisch et al., 2004, GAUSSIAN 03, Revision C.02, Gaussian, Inc., Wallingford, CT) program, the electronic structure of the C-14 and C-7 methyl esters, C14H28O2 (methyl tridecanoate) and C7H14O2 (methyl hexanoate), was estimated. For the electronic calculations, the density functional theory at the B3LYP/6-311G(d,p) level and the complete basis set (CBS-QB3) were applied. Bond dissociation energies for C-14 and C-7 esters were evaluated and compared with those of methyl butanoate, C5H10O2. Using the KHIMERA program (2007, KHIMERA04, Version 1.1, Motorola Inc; Novoselov et al., 2002, “CHIMERA: A Software Tool for Reaction Rate Calculations and Kinetics and Thermodynamics Analysis,” J. Comput. Chem., 23, pp. 1375–1389), contributions from energies, harmonic vibrational frequencies, and moments of inertia were utilized to construct modified Arrhenius rate expressions for bimolecular reactions. C7H14O2 was selected as a surrogate for the C14 fuel in order to study the bimolecular reactions with flame radicals. In the present work, reactions of carbon numbers 4 and 5 of C7H14O2, where carbon number 1 is the one single bonded to oxygen atom, with flame reactive radicals such as CH3, HO2, and H were studied where the rates for the reactions of other carbon sites can be obtained from studying methyl butanoate’s reactions. The rate expressions were estimated using transition state theory as implemented in KHIMERA over the temperature of 500–2000 K.

1.
Dooley
,
S.
,
Curran
,
H.
, and
Simmie
,
J. M.
, 2008, “
Autoignition Measurements and a Validated Kinetic Model for the Biodiesel Surrogate, Methyl Butanoate
,”
Combust. Flame
0010-2180,
153
, pp.
2
32
.
2.
Graboski
,
M. S.
, and
McCormick
,
R. L.
, 1998, “
Combustion of Fat and Vegetable Oil Derived Fuels in Diesel Engines
,”
Prog. Energy Combust. Sci.
0360-1285,
24
, pp.
125
164
.
4.
Dagaut
,
P.
, and
Cathonnet
,
M.
, 2006, “
The Ignition, Oxidation, and Combustion of Kerosene: A Review of Experimental and Kinetic Modeling
,”
Prog. Energy Combust. Sci.
0360-1285,
32
, pp.
48
92
.
5.
Novoselov
,
K. P.
,
Shirabaikin
,
D. B.
,
Umanskii
,
S. Ya.
,
Vladimirov
,
A. S.
,
Minushev
,
A. Kh.
, and
Korkin
,
A. A.
, 2002, “
CHIMERA: A Software Tool for Reaction Rate Calculations and Kinetics and Thermodynamics Analysis
,”
J. Comput. Chem.
0192-8651,
23
, pp.
1375
1389
.
6.
Fisher
,
E. M.
,
Pitz
,
W. J.
,
Curran
,
H. J.
, and
Westbrook
,
C. K.
, 2000, “
Detailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuels
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
1579
1586
.
7.
Gaïl
,
S.
,
Thomson
,
M. J.
,
Sarathy
,
S. M.
,
Syed
,
S. A.
,
Dagaut
,
P.
,
Diévart
,
P.
,
Marchese
,
A. J.
, and
Dryer
,
F. L.
, 2007, “
A Wide-Ranging Kinetic Modeling Study of Methyl Butanoate Combustion
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
305
311
.
8.
Metcalfe
,
W. K.
,
Dooley
,
S.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
El-Nahas
,
A. M.
, and
Navarro
,
M. V.
, 2007, “
Experimental and Modelling Study of C5H10O2 Ethyl and Methyl Esters
,”
J. Phys. Chem. A
1089-5639,
111
, pp.
4001
4014
.
9.
El-Nahas
,
A. M.
,
Navarro
,
M. V.
,
Simmie
,
J. M.
,
Bozzelli
,
J. W.
,
Curran
,
H. J.
,
Dooley
,
S.
, and
Metcalfe
,
W.
, 2007, “
Enthalpies of Formation, Bond Dissociation Energies and Reaction Paths for the Decomposition of Model Biofuels: Ethyl Propanoate and Methyl Butanoate
,”
J. Phys. Chem. A
1089-5639,
111
, pp.
3727
3739
.
10.
Huynh
,
L. K.
, and
Violi
,
A.
, 2008, “
Thermal Decomposition of Methyl Butanoate: Ab Initio Study of a Biodiesel Fuel Surrogate
,”
J. Org. Chem.
0022-3263,
73
, pp.
94
101
.
11.
Dayma
,
G.
,
Gail
,
S.
, and
Dagaut
,
P.
, 2008, “
Experimental and Kinetic Modeling Study of the Oxidation of Methyl Hexanoate
,”
Energy Fuels
0887-0624,
22
, pp.
1469
1479
.
12.
Herbinet
,
O.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
, 2008, “
Detailed Chemical Kinetic Oxidation Mechanism for a Biodiesel Surrogate
,”
Combust. Flame
0010-2180,
154
, pp.
507
528
.
13.
Frisch
,
M. J.
,
Trucks
,
G. W.
,
Schlegel
,
H. B.
,
Scuseria
,
G. E.
,
Robb
,
M. A.
,
Cheeseman
,
J. R.
,
Montgomery
,
J. A.
, Jr.
,
Vreven
,
T.
,
Kudin
,
K. N.
,
Burant
,
J. C.
,
Millam
,
J. M.
,
Iyengar
,
S. S.
,
Tomasi
,
J.
,
Barone
,
V.
,
Mennucci
,
B.
,
Cossi
,
M.
,
Scalmani
,
G.
,
Rega
,
N.
,
Petersson
,
G. A.
,
Nakatsuji
,
H.
,
Hada
,
M.
,
Ehara
,
M.
,
Toyota
,
K.
,
Fukuda
,
R.
,
Hasegawa
,
J.
,
Ishida
,
M.
,
Nakajima
,
T.
,
Honda
,
Y.
,
Kitao
,
O.
,
Nakai
,
H.
,
Klene
,
M.
,
Li
,
X.
,
Knox
,
J. E.
,
Hratchian
,
H. P.
,
Cross
,
J. B.
,
Bakken
,
V.
,
Adamo
,
C.
,
Jaramillo
,
J.
,
Gomperts
,
R.
,
Stratmann
,
R. E.
,
Yazyev
,
O.
,
Austin
,
A. J.
,
Cammi
,
R.
,
Pomelli
,
C.
,
Ochterski
,
J. W.
,
Ayala
,
P. Y.
,
Morokuma
,
K.
,
Voth
,
G. A.
,
Salvador
,
P.
,
Dannenberg
,
J. J.
,
Zakrzewski
,
V. G.
,
Dapprich
,
S.
,
Daniels
,
A. D.
,
Strain
,
M. C.
,
Farkas
,
O.
,
Malick
,
D. K.
,
Rabuck
,
A. D.
,
Raghavachari
,
K.
,
Foresman
,
J. B.
,
Ortiz
,
J. V.
,
Cui
,
Q.
,
Baboul
,
A. G.
,
Clifford
,
S.
,
Cioslowski
,
J.
,
Stefanov
,
B. B.
,
Liu
,
G.
,
Liashenko
,
A.
,
Piskorz
,
P.
,
Komaromi
,
I.
,
Martin
,
R. L.
,
Fox
,
D. J.
,
Keith
,
T.
,
Al-Laham
,
M. A.
,
Peng
,
C. Y.
,
Nanayakkara
,
A.
,
Challacombe
,
M.
,
Gill
,
P. M. W.
,
Johnson
,
B.
,
Chen
,
W.
,
Wong
,
M. W.
,
Gonzalez
,
C.
, and
Pople
,
J. A.
, 2004, GAUSSIAN 03, Revision C.02, Gaussian, Inc., Wallingford, CT.
14.
Sousa
,
S. F.
,
Fernandes
,
P. A.
, and
Ramos
,
M. J.
, 2007, “
General Performance of Density Functional
,”
J. Phys. Chem. A
1089-5639,
111
, pp.
10439
10452
.
15.
Montgomery
,
J. A.
,
Frisch
,
M. J.
,
Ochterski
,
J. W.
, and
Petersson
,
G. A.
, 2000, “
A Complete Basis Set Model Chemistry. VII. Use of the Minimum Population Localization
,”
J. Phys. Chem.
0022-3654,
112
, pp.
6532
6542
.
16.
Pokon
,
E. K.
,
Liptak
,
M. D.
,
Feldgus
,
S.
, and
Shields
,
G. C.
, 2001, “
Comparison of CBS-QB3, CBS-APNO, and G3 Predictions of Gas Phase Deprotonation Data
,”
J. Phys. Chem. A
1089-5639,
105
, pp.
10483
10487
.
17.
Ayala
,
P. Y.
, and
Schlegel
,
H. B.
, 1998, “
Identification and Treatment of Internal Rotation in Normal Mode Vibrational Analysis
,”
J. Chem. Phys.
0021-9606,
108
, pp.
2314
2325
.
18.
2007, KHIMERA04, Version 1.1, Motorola Inc.
19.
Benson
,
S.
, 1976,
Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters
,
2nd ed.
,
Wiley
,
New York
.
20.
Ritter
,
E. R.
, and
Bozzelli
,
J. W.
, 1991, “
THERM: Thermodynamic Property Estimation for Gas Phase Radicals and Molecules
,”
Int. J. Chem. Kinet.
0538-8066,
23
, pp.
767
778
.
21.
Hayes
,
C. J.
, and
Burgess
,
D. R.
, Jr.
, 2009, “
Exploring the Oxidative Decompositions of Methyl Esters: Methyl Butanoate and Methyl Pentanoate as Model Compounds for Biodiesel
,”
Proc. Combust. Inst.
1540-7489,
32
, pp.
263
270
.
22.
Shafagh
,
I.
,
Hughes
,
K. J.
,
Pourkashanian
,
M.
, and
Williams
,
A.
, 2008, “
Investigation Into Bio-Aviation Reactions Mechanisms Using Quantum Mechanical Methods
,” Paper No. IMECE2008-67512.
23.
Levine
,
R. D.
, 2005,
Molecular Reaction Dynamics
,
Cambridge, University Press
, p.
554
.
24.
Huynh
,
L. K.
,
Lin
,
K. C.
, and
Violi
,
A.
, 2008, “
Kinetic Modeling of Methyl Butanoate in Shock Tube
,”
J. Phys. Chem. A
1089-5639,
112
, pp.
13470
13480
.
You do not currently have access to this content.