Hydrogen technology is becoming ever more relevant because hydrogen use can help in containing greenhouse gas emission if CO2 capture and storage technologies are implemented in the hydrogen production pathway (when hydrogen is produced from fossil fuels). This work aims at carrying out a comparative analysis of possible energy scenarios in urban districts. A medium-small Italian city is considered as a reference case, and its energy consumption both for domestic and industrial use is evaluated. The current situation in which conventional technologies meet the energy needs is compared with a hypothetical scenario where hydrogen is largely used. Two options of hydrogen production from commercially ready technologies are investigated: coal gasification and steam methane reforming, as well as hydrogen use in advanced energy systems for transports and for thermal and electric energy generations. Also, the environmental impacts are evaluated. This study is particularly focused on greenhouse gas emissions with specific reference to carbon dioxide. The final goal is to define an alternative scenario, quantifying the energy needs and the relative environmental impacts in order to obtain quantitative information on the environmental benefits of the hydrogen scenario, as well as to identify its possible structural and functional criticalities.

1.
2004, “
Programma Energetico Provinciale
,” Provincia di Pisa, Pianificazione Energetica (in Italian).
2.
Giannotti
,
L.
,
Ridondelli
,
R.
,
Imperatore
,
G.
, and
Padroni
,
L.
, 2004, “
Rapporto sullo Stato dell’Ambiente nel Comune di Pisa
,” Assessorato all’Ambiente, Comune di Pisa (in Italian), http://www.comune.pisa.it/ambiente/pdf/RSA_2004.pdfhttp://www.comune.pisa.it/ambiente/pdf/RSA_2004.pdf
3.
Ballantini
,
M.
,
Ridondelli
,
R.
, and
Frey
,
M.
, 2006, “
Rapporto sullo Stato dell’Ambiente nel Comune di Pisa
,” Assessorato all’Ambiente, Comune di Pisa (in Italian), http://www.comune.pisa.it/ambiente/pdf/RSA_2006.pdfhttp://www.comune.pisa.it/ambiente/pdf/RSA_2006.pdf
6.
Sistema Elettrico, Dati Statistici (in Italian), http://www.terna.it/http://www.terna.it/
7.
Macchi
,
E.
, 2005,
Cicli combinati a gas naturale
,
Polipress
,
Milano
, pp.
134
135
.
8.
Cau
,
G.
, and
Cocco
,
D.
, 2004,
L’impatto ambientale dei sistemi energetici
,
SGE
,
Padova
, pp.
211
212
.
9.
Caputo
,
C.
, 1998,
L’impatto delle macchine sull’ambiente
,
Masson
,
Milano
, pp.
119
126
.
12.
Macchi
,
E.
,
Campanari
,
S.
, and
Silva
,
P.
, 2005,
La Microcogenerazione a Gas Naturale
,
Polipress
,
Milano
, pp.
229
243
.
13.
Ministero dell’Ambiente e della Tutela del Territorio e del Mare
, “
Clima, I meccanismi flessibili del Protocollo di Kyoto
,” in Italian, http://www.minambiente.ithttp://www.minambiente.it
14.
2001, “
Third Assessment Report: Climate Change 2001
,” IPCC.
15.
Chiesa
,
P.
, and
Consonni
,
S.
, 1999, “
Shift Reactors and Physical Absorption for Low-CO2 Emission in IGCCs
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
121
(
2
), pp.
295
305
.
16.
Notaro
,
M.
, 2008, “
Cattura Post-Combustione: Sorbenti Innovativi per la Cattura della CO2 a Valle della Combustione
,”
Workshop Cattura e sequestro della CO2 risultati e ricerche in ambito Italiano
, CESI Ricerche, in Italian.
17.
EG&G Technical Services, Inc.
, 2004,
Fuel Cell Handbook
,
7th ed.
,
U.S. Department of Energy
,
Morgantown, WV
.
18.
Chiesa
,
P.
,
Consonni
,
S.
,
Kreutz
,
T.
, and
Williams
,
R.
, 2005, “
Co-Production of Hydrogen, Electricity and CO2 From Coal With Commercially Ready Technology. Part A: Performance and Emissions
,”
Int. J. Hydrogen Energy
0360-3199,
30
(
7
), pp.
747
767
.
19.
Consonni
,
S.
, and
Viganò
,
F.
, 2005, “
Decarbonized Hydrogen and Electricity From Natural Gas
,”
Int. J. Hydrogen Energy
0360-3199,
30
(
7
), pp.
701
718
.
20.
Gambini
,
M.
, and
Vellini
,
M.
, 2005, “
Overall Performance of Advanced H2/Air Cycle Power Plants Based on Coal Decarbonization
,” ASME Paper No. PWR2005-50117.
You do not currently have access to this content.