Energy and exergy assessments are reported of integrated power generation using solid oxide fuel cells (SOFCs) with internal reforming and a gas turbine cycle. The gas turbine inlet temperature is fixed at 1573 K and the high-temperature turbine exhaust heats the natural gas and air inputs, and generates pressurized steam. The steam mixes at the SOFC stack inlet with natural gas to facilitate the reformation process. The integration of solid oxide fuel cells with gas turbines increases significantly the power generation efficiency relative to separate processes and reduces greatly the exergy loss due to combustion, which is the most irreversible process in the system. The other main exergy destruction is attributable to electrochemical fuel oxidation in the SOFC. The energy and exergy efficiencies of the integrated system reach 70–80%, which compares well to the efficiencies of approximately 55% typical of conventional combined-cycle power generation systems. Variations in the energy and exergy efficiencies of the integrated system with operating conditions are provided, showing, for example, that SOFC efficiency is enhanced if the fuel cell active area is augmented. The SOFC stack efficiency can be maximized by reducing the steam generation while increasing the stack size, although such measures imply a significant and nonproportional cost rise. Such measures must be implemented cautiously, as a reduction in steam generation decreases the steam/methane ratio at the anode inlet, which may increase the risk of catalyst coking. A detailed assessment of an illustrative example highlights the main results.

1.
Safonov
,
M.
,
Granovskii
,
M.
, and
Pozharskii
,
S.
, 1993, “
Thermodynamical Efficiency of Cogeneration of Electrical Energy and Hydrogen in Gas-Turbine Cycle of Methane Oxidation
,”
Dokl. Akad. Nauk SSSR
0002-3264,
328
, pp.
202
204
.
2.
Granovskii
,
M.
,
Safonov
,
M.
, and
Pozharskii
,
S.
, 2002, “
Integrated Scheme of Natural Gas Usage With Minimum Production of Entropy
,”
Can. J. Chem. Eng.
0008-4034,
80
, pp.
998
1001
.
3.
Granovskii
,
M.
, and
Safonov
,
M.
, 2003, “
New Integrated Scheme of the Closed Gas-Turbine Cycle With Synthesis Gas Production
,”
Chem. Eng. Sci.
0009-2509,
58
, pp.
3913
3921
.
4.
Weber
,
A.
,
Sauer
,
B.
,
Muller
,
A.
,
Herbstritt
,
D.
, and
Ivers-Tiffee
,
E.
, 2002, “
Oxidation of H2, CO and Methane in SOFCs With Ni/YSZ-Cermet Anodes
,”
Solid State Ionics
0167-2738,
152–153
, pp.
543
550
.
5.
Dicks
,
A.
, 1998, “
Advances in Catalysts for Internal Reforming in High Temperature Fuel Cells
,”
J. Power Sources
0378-7753,
71
, pp.
111
122
.
6.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
,
2nd ed.
,
Wiley
,
Chichester, UK
.
7.
Campanari
,
S.
, 2001, “
Thermodynamic Model and Parametric Analysis of a Tubular SOFC Module
,”
J. Power Sources
0378-7753,
92
, pp.
26
34
.
8.
Singhal
,
S. C.
, and
Kendal
,
K.
, 2003,
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
Elsevier
,
New York
, p.
430
.
9.
Rosen
,
M. A.
, 1990, “
Comparison Based on Energy and Exergy Analyses of the Potential Cogeneration Efficiencies for Fuel Cells and Other Electricity Generation Devices
,”
Int. J. Hydrogen Energy
0360-3199,
15
, pp.
267
274
.
10.
Chan
,
S.
,
Low
,
C.
, and
Ding
,
O.
, 2002, “
Energy and Exergy Analysis of Simple Solid-Oxide Fuel-Cell Power Systems
,”
J. Power Sources
0378-7753,
103
, pp.
188
200
.
11.
Chan
,
S. H.
,
Low
,
C. F.
, and
Ding
,
O. L.
, 2002, “
Energy and Exergy Analysis of Simple Solid-Oxide Fuel-Cell Power Systems
,”
J. Power Sources
0378-7753,
103
(
2
), pp.
188
200
.
12.
Kuchonthara
,
P.
,
Bhattacharya
,
S.
, and
Tsutsumi
,
A.
, 2003, “
Combinations of Solid Oxide Fuel Cell and Several Enhanced Gas Turbine Cycle
,”
J. Power Sources
0378-7753,
124
, pp.
65
75
.
13.
Chan
,
S.
,
Ho
,
H.
, and
Tian
,
Y.
, 2002, “
Modelling of Simple Hybrid Solid Oxide Fuel Cell and Gas Turbine Power Plant
,”
J. Power Sources
0378-7753,
109
, pp.
111
120
.
14.
Campanari
,
S.
, 2002, “
Carbon Dioxide Separation From High Temperature Fuel Cell Plants
,”
J. Power Sources
0378-7753,
112
, pp.
273
289
.
15.
Fontell
,
E.
,
Kivisaari
,
T.
,
Hansen
,
J. -B.
, and
Palsson
,
J.
, 2004, “
Conceptual Study of a 250 kW Planar SOFC System for CHP Application
,”
J. Power Sources
0378-7753,
131
, pp.
49
56
.
16.
Singhal
,
S.
, 2000, “
Advances in Solid Oxide Fuel Cell Technology
,”
Solid State Ionics
0167-2738,
135
, pp.
305
313
.
17.
Bannister
,
R.
,
Cheruvu
,
N.
,
Little
,
N.
, and
McQuiggan
,
G.
, 1995, “
Development Requirements for an Advanced Gas Turbine System
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
117
, pp.
724
733
.
18.
Kirillin
,
V.
,
Sychev
,
V.
, and
Sheindlin
,
A.
, 1979,
Engineering Thermodynamics
,
Nauka
,
Moscow
.
19.
Hinderink
,
A.
,
Kerkhof
,
F.
,
Lie
,
A.
,
Arons
,
J.
, and
Kooi
,
H.
, 1996, “
Exergy Analysis With a Flowsheeting Simulator—II. Application: Synthesis Gas Production From Natural Gas
,”
Chem. Eng. Sci.
0009-2509,
51
, pp.
4701
4715
.
20.
1987,
Reference Book for Industrial Workers in Ammonia Industry
,
E.
Melnikov
, ed.,
Himiya
,
Moscow
.
21.
1981,
Brief Reference Book of Physical and Chemical Values
,
K.
Mischenko
and
A.
Ravdel
, eds.,
Himiya
,
Moscow
.
22.
Tu
,
H.
, and
Stimming
,
U.
, 2004, “
Advances, Aging Mechanisms and Lifetime in Solid-Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
127
, pp.
284
293
.
23.
Haile
,
S.
, 2003, “
Fuel Cell Materials and Components
,”
Acta Mater.
1359-6454,
51
, pp.
5981
6000
.
24.
Dokiya
,
M.
, 2002, “
SOFC System and Technology
,”
Solid State Ionics
0167-2738,
152–153
, pp.
383
392
.
25.
Granovskii
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
, 2008, “
Exergy Analysis of Gas Turbine Cycle With Steam Generation for Methane Conversion Within Solid Oxide Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X
5
(
3
), p.
031005
.
26.
Saidi
,
M. H.
,
Abbassi
,
A.
, and
Ehyaei
,
M. A.
, 2005, “
Exergetic Optimization of a PEM Fuel Cell for Domestic Hot Water Heater
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
2
, pp.
284
289
.
27.
Haynes
,
C.
, and
Wepfer
,
W. J.
, 2002, “
Enhancing the Performance Evaluation and Process Design of a Commercial-Grade Solid Oxide Fuel Cell Via Exergy Concepts
,”
ASME J. Energy Resour. Technol.
0195-0738,
124
, pp.
95
104
.
28.
Cownden
,
R.
,
Nahon
,
M.
, and
Rosen
,
M. A.
, 2001, “
Exergy Analysis of a Fuel Cell Power System for Transportation Applications
,”
Int. J. Exergy
1742-8297,
1
(
2
), pp.
112
121
.
29.
Douvartzides
,
S. L.
,
Coutelieris
,
F. A.
, and
Tsiakaras
,
P. E.
, 2003, “
On the Systematic Optimization of Ethanol Fed SOFC-Based Electricity Generating Systems in Terms of Energy and Exergy
,”
J. Power Sources
0378-7753,
114
, pp.
203
212
.
30.
Rosen
,
M. A.
, and
Scott
,
D. S.
, 1988, “
A Thermodynamic Investigation of the Potential for Cogeneration for Fuel Cells
,”
Int. J. Hydrogen Energy
0360-3199,
13
(
12
), pp.
775
782
.
31.
2003, “
Scale-Up of Planar SOFC Stack Technology for MW-level Combined Cycle System
,” TIAX LLC Acorn Park, Cambridge, MA, Final Report No. D0136.
32.
Zhu
,
H.
, and
Kee
,
R. J.
, 2006, “
Thermodynamics of SOFC Efficiency and Fuel Utilization as Functions of Fuel Mixtures and Operating Conditions
,”
J. Power Sources
0378-7753,
161
, pp.
957
964
.
33.
Cunnel
,
C.
,
Pangalis
,
M. G.
, and
Martinez-Botas
,
R. F.
, 2002, “
Integration of Solid Oxide Fuel Cells Into Gas Turbine Power Generation Cycles. Part 2: Hybrid Model for Various Integration Schemes
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
216
, pp.
145
154
.
34.
Massardo
,
A. F.
, and
Lubelli
,
F.
, 2000, “
Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-GT): Part A—Cell Model and Cycle Thermodynamic Analysis
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
122
, pp.
27
35
.
35.
Hoogers
,
G.
, 2003,
Fuel Cell Technology Handbook
,
CRC
,
New York
.
36.
Massardo
,
A. F.
, 2003, “
Internal Reforming Solid Oxide Fuel Cell Gas Turbine Combined Cycles (IRSOFC-GT)—Part II: Exergy and Thermoeconomic Analyses
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
67
74
.
37.
Bedringas
,
K. W.
,
Ertesvag
,
I. S.
,
Byggstoyl
,
S.
, and
Magnussen
,
B. F.
, 1997, “
Exergy Analysis of Solid-Oxide Fuel-Cell (SOFC) Systems
,”
Energy
0360-5442,
22
, pp.
403
412
.
38.
Douvartzides
,
S.
,
Coutelieris
,
F.
, and
Tsiakaras
,
P.
, 2004, “
Exergy Analysis of a Solid Oxide Fuel Cell Power Plant Fed by Either Ethanol or Methane
,”
J. Power Sources
0378-7753,
131
, pp.
224
230
.
39.
Hotz
,
N.
,
Senn
,
S. M.
, and
Poulikakos
,
D.
, 2006, “
Exergy Analysis of a Solid Oxide Fuel Cell Micropowerplant
,”
J. Power Sources
0378-7753,
158
, pp.
333
347
.
40.
Pangalis
,
M. G.
,
Martinez-Botas
,
R. F.
, and
Brandon
,
N. P.
, 2002, “
Integration of Solid Oxide Fuel Cells into Gas Turbine Power Generation Cycles. Part 1: Fuel Cell Thermodynamic Modeling
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
216
, pp.
129
144
.
You do not currently have access to this content.