Biomass gasification involves the production of a gaseous fuel by partial oxidation of a solid fuel. Clean synthesis (syn) gas, produced from partial combustion of biomass, can be burnt in a gas turbine combustion chamber to run a biomass based combined cycle power plant. A thermochemical model has been developed to predict the gas composition and performance of a biomass gasifier based on thermodynamic equilibrium concept for different biomass materials. A simplified numerical method is applied to solve the thermochemical equilibrium reactions. The system consists of a pressurized circulating fluidized bed to produce the syn gas from the biomass. The effect of the relative air fuel ratio (RAFR), steam fuel ratio (SFR), and gasifier pressure has been examined on the gas composition, gasifier temperature, lower heating value of syn gas, and exergy efficiency of biomass gasifier to obtain a high yield from the biomass. It has been found that at lower values of RAFR and SFR, the heating value of the syn gas and the exergy efficiency of gasifier is high.

1.
Mark
,
A.
, and
Mike
,
J. W.
, 2003, “
Biomass Gasification Combined Cycle Opportunities Using the Future Energy Silvagas Gasifier Coupled to Alstom’s Industrial Gas Turbines
,” ASME Paper No. GT2003-38294.
2.
Savola
,
T.
, 2005, “
Simulation and Optimization of Power Production in Biomass-Fuelled Small-Scale CHP Plants
,” M.S. thesis, Department of Mechanical Engineering, Helsinki University of Technology Energy, Engineering and Environmental Protection Publications, Espoo, Finland, Paper No. TKK-ENY-23.
3.
Margaret
,
K. M.
, and
Pamela
,
L. S.
, 2002, “
Life Cycle Assessment Comparisons of Electricity From Biomass, Coal, and Natural Gas
,”
National Renewable Energy Laboratory, Annual Meeting of the American Institute of Chemical Engineers
, Paper No. 18d.
4.
Anil
,
K.
,
Prasad
,
P.
,
Preeti
,
A.
, and
Anuradda
,
G.
, 2006, “
Equilibrium Model for Biomass Gasification
,”
Proceedings of the International Conference on Advances in Energy Research (AER-2006)
, pp.
106
112
.
5.
Shen
,
L.
,
Gao
,
Y.
, and
Xiao
,
J.
, 2008, “
Simulation of Hydrogen Production From Biomass Gasification in Interconnected Fluidized Beds
,”
Biomass Bioenergy
0961-9534,
32
(
2
), pp.
120
127
.
6.
Mahishi
,
M. R.
, and
Goswami
,
D. Y.
, 2007, “
Thermodynamic Optimization of Biomass Gasifier for Hydrogen Production
,”
Int. J. Hydrogen Energy
0360-3199,
32
(
16
), pp.
3831
3840
.
7.
Ptasinski
,
K. J.
,
Prins
,
M. J.
, and
Pierik
,
A.
, 2007, “
Exergetic Evaluation of Biomass Gasification
,”
Energy
0360-5442,
32
(
4
), pp.
568
574
.
8.
Rutherford
,
J.
, 2006, “
Heat and Power Applications of Advanced Biomass Gasifiers in New Zealand’s Wood Industry
,” M.E. thesis in Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand.
9.
Jarungthammachote
,
S.
, and
Dutta
,
A.
, 2007, “
Thermodynamic Equilibrium Model and Second Law Analysis of a Downdraft Waste Gasifier
,”
Energy
0360-5442,
32
(
9
), pp.
1660
1669
.
10.
Ponzio
,
A.
,
Kalisz
,
S.
, and
Blasiak
,
W.
, 2006, “
Effect of Operating Conditions on Tar and Gas Composition in High Temperature Air/Steam Gasification (HTAG) of Plastic Containing Waste
,”
Fuel Process. Technol.
0378-3820,
87
(
3
), pp.
223
233
.
11.
Lozza
,
G.
, and
Chiesa
,
P.
, 2002, “
Natural Gas Decarbonization to Reduce CO2 Emission From Combined Cycles—Part II: Steam-Methane Reforming
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
(
1
), pp.
89
95
.
12.
Prins
,
M. J.
,
Ptasinski
,
K. J.
, and
Janssen
,
F. J. J. G.
, 2003, “
Thermodynamics of Gas-Char Reactions: First and Second Law Analysis
,”
Chem. Eng. Sci.
0009-2509,
58
(
3–6
), pp.
1003
1011
.
13.
Melgar
,
A.
,
Perez
,
J. F.
,
Laget
,
H.
, and
Horillo
,
A.
, 2007, “
Thermochemical Equilibrium Modeling of a Gasifying Process
,”
Energy Convers. Manage.
0196-8904,
48
(
1
), pp.
59
67
.
14.
Jangsawang
,
W.
,
Klimanek
,
A.
, and
Gupta
,
A. K.
, 2006, “
Enhanced Yield of Hydrogen From Wastes Using High Temperature Steam Gasification
,”
ASME J. Energy Resour. Technol.
0195-0738,
128
(
3
), pp.
179
185
.
15.
Zainal
,
Z. A.
,
Ali
,
R.
,
Lean
,
C. H.
, and
Seetharamu
,
K. N.
, 2001, “
Prediction of the Performance of a Downdraft Gasifier Using Equilibrium Modeling for Different Biomass Materials
,”
Energy Convers. Manage.
0196-8904,
42
(
12
), pp.
1499
515
.
16.
Baratieri
,
M.
,
Baggio
,
P.
,
Fiori
,
L.
, and
Grigiante
,
M.
, 2008, “
Biomass as an Energy Source: Thermodynamic Constraints on the Performance of the Conversion Process
,”
Bioresour. Technol.
0960-8524,
99
(
15
), pp.
7063
7073
.
17.
Schuster
,
G.
,
Loffler
,
G. L.
,
Weigl
,
K.
, and
Hofbauer
,
H.
, 2001, “
Biomass Steam Gasification—An Extensive Parametric Modeling Study
,”
Bioresour. Technol.
0960-8524,
77
(
1
), pp.
71
79
.
18.
Srinivas
,
T.
,
Gupta
,
A. V. S. S. K. S.
, and
Reddy
,
B. V.
, 2009, “
Carbon Dioxide Emission Reduction From Combined Cycle With Partial Oxidation of Natural Gas
,”
Energy for Sustainable Development
, International Energy Initiative,
13
(
1
), pp.
33
37
.
19.
Sun
,
S.
,
Zhao
,
Y.
,
Ling
,
F.
, and
Su
,
F.
, 2009, “
Experimental Research on air Staged Cyclone Gasification of Rice Husk
,”
Fuel Process. Technol.
0378-3820,
90
(
4
), pp.
465
471
.
20.
Srinivas
,
T.
,
Gupta
,
A. V. S. S. K. S.
,
Reddy
,
B. V.
, and
Nag
,
P. K.
, 2006, “
Parametric Analysis of a Coal Based Combined Cycle Power Plant
,”
Int. J. Energy Res.
0363-907X,
30
, pp.
19
36
.
21.
Saravanamuttoo
,
H. I. H.
,
Rogers
,
G. F. C.
, and
Cohen
,
H.
, 2003,
Gas Turbine Theory
,
5th ed.
,
Pearson Education
,
Harlow, England
.
22.
Kotas
,
T. J.
, 1995,
The Exergy Method of Thermal Plant Analysis
,
Krieger Publishing
,
Malabar, FL
.
23.
Altafini
,
C. R.
,
Wander
,
P. R.
, and
Barreto
,
R. M.
, 2003, “
Prediction of the Working Parameters of a Wood Waste Gasifier Through an Equilibrium Model
,”
Energy Convers. Manage.
0196-8904,
44
(
17
), pp.
2763
77
.
You do not currently have access to this content.