In (bubbling) fluidized-bed combustion and gasification of biomass, several potential problems are associated with the inorganic components of the fuel. A major problem area is defluidization due to bed agglomeration. The most common found process leading to defluidization in commercial-scale installations is “coating-induced” agglomeration. During reactor operation, a coating is formed on the surface of bed material grains and at certain critical conditions (e.g., coating thickness or temperature) sintering of the coatings initiates the agglomeration. In an experimental approach, this work describes a fundamental study on the mechanisms of defluidization. For the studied process of bed defluidization due to sintering of grain-coating layers, it was found that the onset of the process depends on (a) a critical coating thickness, (b) on the fluidization velocity when it is below approximately four times the minimum fluidization velocity, and (c) on the viscosity (stickiness) of the outside of the grains (coating).

1.
Visser
,
H. J. M.
,
Hofmans
,
H.
,
Huijnen
,
H.
,
Kastelein
,
R.
, and
Kiel
,
J. H. A.
, 2001, “
Biomass Ash-Bed Material Interaction Processes Leading to Agglomeration in Fluidised Bed Gasifiers and Combustors I
,”
Progress in Thermochemical Biomass Conversion
,
A. V.
Bridgwater
, ed.,
Blackwell Science Ltd.
,
London
, Vol.
1
, pp,
272
286
.
2.
Visser
,
H. J. M.
, and
Kiel
,
J. H. A.
, 2000, “
Bed Agglomeration Mechanisms in Fluidised Bed Biomass Gasification and Combustion
,”
The IFRF Copenhagen Session Totem 15-Ash
,
Kopenhagen
,
Danmark
, June 26–28.
3.
Visser
,
H. J. M.
, 1999, “
Mass Transfer Processes in Crystalline Aggregates Containing a Fluid Phase
,” Ph.D. thesis, Utrecht University, the Netherlands.
4.
Laitinen
,
R.
,
Nuutinen
,
L.
,
Tiainen
,
M.
, and
Virtanen
,
M.
, 2000, “
An Improved Bed Material for the BFB-Boilers. Case 2: Combustion of Fuel With High Na Content
,”
Proceedings of Fifth European Conference on Industrial Furnaces and Boilers
,
Porto
,
Portugal
, April
11
14
.
5.
Lind
,
T.
,
Valmari
,
T.
,
Kauppinen
,
E.
,
Nilsson
,
K.
,
Sfiris
,
G.
, and
Maenhaut
,
W.
, 2000, “
Ash Formation Mechanisms During Combustion of Wood in Circulating Fluidised Beds
,”
Proceedings of the 28th International Symposium on Combustion
, Edingborough, July 30–Aug. 4.
6.
Öhman
,
M.
,
Nordin
,
A.
,
Skrivars
,
B.-J.
,
Backman
,
R.
, and
Hupa
,
M.
, 2000, “
Bed Agglomeration Characteristics During Fluidised Bed Combustion of Biomass
,”
Energy Fuels
0887-0624,
14
, pp.
169
178
.
7.
Kunii
,
D.
, and
Levenspiel
,
O.
, 1999,
Fluidisation Engeneering
,
2nd ed.
Butterwort–Heinemann
,
Boston
.
8.
Vargas
,
S.
,
Frandsen
,
F. J.
, and
Dam-Johansen
,
K.
, 2001, “
Rheological Properties of High Temperature Melts of Coal Ashes and Other Silicates
,”
Prog. Energy Combust. Sci.
0360-1285,
27
, pp.
237
429
.
9.
Lyon
,
K. C.
, 1974, “
Predictions of the Viscosities of Soda-Lime Silicate Glasses
,”
J. Res. Natl. Bur. Stand.
0160-1741,
78A
(
4
), pp.
497
504
.
10.
Senior
,
C. L.
, and
Srinivasachar
,
S.
, 1995, “
Viscosity of Ash Particles in Combustion Systems for Prediction of Particle Sticking
,”
Energy Fuels
0887-0624,
9
, pp.
p277
283
.
11.
Boow
,
J.
, 1969,
Fuel
0016-2361,
48
, p.
171
.
12.
Boow
,
J.
, 1972,
Fuel
0016-2361,
51
, p.
170
.
13.
Wibberley
,
L. J.
, and
Wall
,
T. F.
, 1982,
Fuel
0016-2361,
61
, p.
93
.
14.
1999,
Ullmann’s Encyclopedia of Industrial Chemistry
,
Second Release
,
6th ed.
.
You do not currently have access to this content.