Homogeneous charge compression ignition (HCCI) is a new engine technology with fundamental differences over conventional engines. HCCI engines are intrinsically fuel flexible and can run on low-grade fuels as long as the fuel can be heated to the point of ignition. In particular, HCCI engines can run on “wet ethanol:” ethanol-in-water mixtures with high concentration of water. Considering that much of the energy required for processing fermented ethanol is spent in distillation and dehydration, direct use of wet ethanol in HCCI engines considerably shifts the energy balance in favor of ethanol. The results of the paper show that a HCCI engine with efficient heat recovery can operate on a mixture of 35% ethanol and 65% water by volume while achieving a high brake thermal efficiency (38.7%) and very low NOx (1.6ppm, clean enough to meet any existing or oncoming emissions standards). Direct utilization of ethanol at a 35% volume fraction reduces water separation cost to only 3% of the energy of ethanol and coproducts (versus 37% for producing pure ethanol) and improves the net energy gain from 21% to 55% of the energy of ethanol and coproducts. Wet ethanol utilization is a promising concept that merits more detailed analysis and experimental evaluation.

1.
Pimentel
,
D.
, 2001, “
The Limits of Biomass Energy
,”
Encyclopedia of Physical Science and Technology
,
3rd. ed.
,
Academic
,
New York
, Vol.
2
, pp.
159
171
.
2.
Shapouri
,
H.
,
Duffield
,
J. A.
, and
Graboski
,
M. S.
, 1995, “
Estimating the Net Energy Balance of Corn Ethanol
,” USDA Economic Research Service Report No. AER-721, Washington, D.C.
3.
Shapouri
,
H.
,
Duffield
,
J. A.
, and
Wang
,
M.
, 2003, “
The Energy Balance of Corn Ethanol Revisited
,”
Trans. ASAE
0001-2351,
46
(
4
), pp.
959
968
.
4.
Wyman
,
C. E.
, 1999, “
Sterilization of Fermentation Vessels by Ethanol/Water Mixtures
,” US Patent 5,868,997.
5.
Ladisch
,
M. R.
, and
Dyck
,
K.
, 1979, “
Dehydration of Ethanol: New Approach Gives Positive Energy Balance
,”
Science
0036-8075,
205
, pp.
878
900
.
6.
Epping
,
K.
,
Aceves
,
S. M.
,
Bechtold
,
R. L.
, and
Dec
,
J. E.
, 2002, “
The Potential of HCCI Combustion for High Efficiency and Low Emissions
,” SAE Paper No. 2002-01-1923.
7.
Aceves
,
S. M.
,
Flowers
,
D. L.
,
Westbrook
,
C. K.
,
Pitz
,
W.
,
Smith
,
J. R.
,
Dibble
,
R. W.
,
Christensen
,
M.
, and
Johansson
,
B.
, 2000, “
A Multi-Zone Model for Prediction of HCCI Combustion and Emissions
,” SAE Paper No. 2000-01-0327.
8.
Sharke
,
P.
, 2000, “
Otto or Not, Here It Comes
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
122
(
6
), pp.
62
66
.
9.
Wolters
,
P.
,
Salber
,
W.
,
Geiger
,
J.
,
Duesmann
,
M.
, and
Dilthey
,
J.
, 2003, “
Controlled Auto Ignition Combustion Process With an Electromechanical Valve Train
,” SAE Paper No. 2003-01-0032.
10.
Ohyama
,
Y.
, 2003, “
Simultaneous Control of Air/Fuel Ratio and Intake, Exhaust Valve Timing for HCCI Operation
,” SAE Paper No. 2003-01-1084.
11.
Allen
,
J.
, and
Law
,
D.
, 2002, “
Variable Valve Actuated Controlled Auto-Ignition: Speed Load Maps and Strategic Regimes of Operation
,” SAE Paper No. 2002-01-0422.
12.
Koopmans
,
L.
,
Strom
,
H.
,
Lundgren
,
S.
,
Backlund
,
O.
, and
Denbratt
,
I.
, 2003, “
Demonstrating a SI-HCCI-SI Mode Change on a Volvo 5-Cylinder Electronic Valve Control Engine
,” SAE Paper No. 2003-01-0753.
13.
Martinez-Frias
,
J.
,
Aceves
,
S. M.
,
Flowers
,
D.
,
Smith
,
J. R.
, and
Dibble
,
R.
, 2000, “
HCCI Engine Control by Thermal Management
,” SAE Paper No. 2000-01-2869.
14.
Heywood
,
J. B.
, 1988,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
15.
Flowers
,
D.
,
Martinez-Frias
,
J.
,
Espinosa-Loza
,
F.
,
Killingsworth
,
N.
,
Aceves
,
S. M.
,
Dibble
,
R.
,
Krstic
,
M.
, and
Bining
,
A.
, 2005, “
Development and Testing of a 6-Cylinder HCCI Engine for Distributed Generation
,”
Proceedings of 2005 Fall Technical Conference ASME International Combustion Engine Division
,
Long Beach, CA
, Paper No. ICEF2005-1342.
16.
Wilson
,
D. G.
, 1993,
The Design of High-Efficiency Turbomachinery and Gas Turbines
,
The MIT Press
,
Cambridge
.
17.
Dec
,
J. E.
, and
Sjöberg
,
M.
, 2003, “
A Parametric Study of HCCI Combustion: The Sources of Emissions at Low Loads and the Effects of GDI Fuel Injection
,” SAE Paper No. 2003-01-0752.
18.
Kee
,
R. J.
,
Rupley
,
F. M.
,
Meeks
,
E.
, and
Miller
,
J. A.
, 1996, “
CHEMKIN III: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics
,” Sandia National Laboratories Report No. SAND96-8216, Livermore, CA.
19.
Marinov
,
N. M.
, 1999, “
A Detailed Chemical Kinetic Model for High Temperature Ethanol Oxidation
,”
Int. J. Chem. Kinet.
0538-8066,
31
, pp.
183
220
.
20.
Frenklach
,
M.
,
Wang
,
H.
,
Goldenberg
,
M.
,
Smith
,
G. P.
,
Golden
,
D. M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Gardiner
,
W. C.
, and
Lissianski
,
V.
, 1995, “
GRI-Mech: An Optimized Detailed Chemical Reaction Mechanism for Methane Combustion
,” GRI Topical Report No. GRI-95/0058.
21.
Woschni
,
G.
, 1967, “
Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine
,” SAE Paper No. 670931.
22.
Christensen
,
M.
,
Johansson
,
B.
,
Amneus
,
P.
, and
Mauss
,
F.
, 1998, “
Supercharged Homogeneous Charge Compression Ignition
,” SAE Paper No. 980787.
23.
Patton
,
K. J.
,
Nitschke
,
R. G.
, and
Heywood
,
J. B.
, 1989, “
Development and Evaluation of a Friction Model for Spark-Ignition Engines
,” SAE Paper No. 890836.
24.
Ueno
,
H.
,
Furutani
,
T.
,
Nagami
,
T.
,
Aono
,
N.
,
Goshima
,
H.
, and
Kasahara
,
K.
, 1998, “
Development of Catalyst for Diesel Engine
,” SAE Paper No. 980195.
25.
Ho
,
C. Y.
,
Liley
,
P. E.
,
Makita
,
T.
, and
Tanaka
,
Y.
, 1988,
Properties of Inorganic and Organic Fluids
,
Cindas Data Series of Material Properties
,
Hemisphere
,
New York
, Vol.
V-1
, Chap. 10.
26.
Aceves
,
S. M.
,
Martinez-Frias
,
J.
, and
Reistad
,
G. M.
, 2006, “
Analysis of Homogeneous Charge Compression Ignition (HCCI) Engines for Cogeneration Applications
,”
ASME J. Energy Resour. Technol.
0195-0738,
128
, pp.
16
27
.
You do not currently have access to this content.