This communication presents the thermodynamic analysis along with a detailed parametric study of an irreversible regenerative MHD power cycle. The power output is adopted as the objective function and optimized with respect to the cycle temperature ratio for a typical set of operating parameters. The power output is found to be an increasing function of the effectiveness and the heat capacitance rates on the hot- and cold-side reservoirs, the regenerative effectiveness, and the compressor and generator efficiencies, while it is found to be a decreasing function of the working fluid heat capacitance rates and the Mach number. The effects of the cold-side effectiveness and heat capacitance rate are found to be more than those of the other side effectiveness and heat capacitance rates on the performance of the cycle. The effect of the compressor efficiency is found to be more than that of the generator efficiency on the power output while it is reverse in the case of thermal efficiency. It is also found that there is an optimum relation among the various heat capacitance rates at which the cycle attains the maximum performance.

1.
Wu
,
C.
, and
Kiang
,
R. L.
, 1990, “
Work and power optimization of a finite time Brayton cycle
,”
Int. J. Ambient Energ.
0143-0750,
11
, pp.
129
136
.
2.
Wu
,
C.
, and
Kiang
,
R. S.
, 1991, “
Power performance of a nonisentropic Brayton cycle
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
113
, pp.
501
504
.
3.
Wu
,
C.
,
Chen
,
L.
, and
Sun
,
F.
, 1996, “
Performance of regenerative Brayton heat engine
,”
Energy
0360-5442,
21
, pp.
71
76
.
4.
Curzon
,
F. L.
, and
Alhbom
,
B.
, 1975, “
Efficiency of Carnot heat engine at maximum power output
,”
Am. J. Phys.
0002-9505,
43
, pp.
22
24
.
5.
Leff
,
H. S.
. 1987, “
Thermal efficiency at maximum power output: New results for old engines
,”
Am. J. Phys.
0002-9505,
55
(
7
), pp.
602
610
.
6.
Bejan
,
A.
. 1998, “
Theory of Irreversible power plants
,”
Int. J. Heat Mass Transfer
0017-9310,
31
(
6
), pp.
1211
1219
.
7.
Wu
,
C.
, and
Kiang
,
R. L.
, 1992, “
Finite time thermodynamic analysis of a finite time Carnot heat engine with internal irreversibility
,”
Energy
0360-5442,
17
, pp.
1173
1178
.
8.
Nuwayhid
,
R. Y.
, and
Moukalled
,
F.
. 2001, “
Optimum efficiency of multistage heat engines including heat leak
,”
Proc. Efficiency, Cost Optimization, Simulation and Environmental Aspects of Energy Systems and Processes Conference
, pp.
163
174
.
9.
Ibrahim
,
O. M.
,
Klein
,
S. A.
, and
Mitchell
,
J. W.
, 1991, “
Optimum performance of Brayton cycle with nonisentropic processes
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
113
, pp.
514
521
.
10.
Cheng
,
C. Y.
, and
Chen
,
C. K.
, 1996, “
Power optimization of an endoreversible regenerative Brayton cycle
,”
Energy
0360-5442,
21
(
4
), pp.
241
247
.
11.
Kaushik
,
S. C.
, and
Tyagi
,
S. K.
, 2002, “
Finite time thermodynamic analysis of a nonisentropic regenerative Brayton heat engine
,”
Int. J. Sol. Energy
0142-5919,
22
, pp.
141
151
.
12.
Kaushik
,
S. C.
,
Singh
,
N.
, and
Tyagi
,
S. K.
. 1999, “
Thermodynamic evaluation of a modified steam regenerative Brayton cycle for solar thermal power generation
,”
SESI-J.
,
9
(
2
), pp
63
75
.
13.
Vecchiarelli
,
J.
,
Kawall
,
J. G.
, and
Wallance
,
J. S.
, 1997, “
Analysis of a concept for increasing the efficiency of Brayton cycle via isothermal heat addition
,”
Int. J. Energy Res.
0363-907X,
21
, pp.
113
127
.
14.
Göktun
,
S.
, and
Yavuz
,
H.
, 1999, “
Thermal efficiency of a regenerative Brayton cycle with isothermal heat addition
,”
Energy Convers. Manage.
0196-8904,
40
, pp.
1259
1266
.
15.
Tyagi
,
S. K.
,
Kaushik
,
S. C.
, and
Tyagi
,
B. K.
, 2000, “
Thermodynamic evaluation of a regenerative closed cycle Brayton heat engine with isothermal heat addition
,”
National Renewable Energy Convention 2000
, November 30 December 2,
IIT
, Bombay (India), pp.
419
424
.
16.
Erbay
,
L. B.
,
Göktun
,
S.
, and
Yavuz
,
H.
, 2001, “
Optimal design of the regenerative gas turbine engine with isothermal heat addition
,”
Appl. Energy
0306-2619,
68
, pp.
249
264
.
17.
Kaushik
,
S. C.
,
Tyagi
,
S. K.
, and
Singhal
,
M. K.
, 2003, “
Parametric study of an irreversible regenerative closed cycle Brayton heat engine with isothermal heat addition
,”
Energy Convers. Manage.
0196-8904,
44
, pp.
2013
2025
.
18.
Mather
,
N. W.
, and
Sutton
,
G. W.
, 1962,
Engineering Aspects of Engineering Magnetohyrdodynamics
,
Gordon and Breach Science Publishers
, New York.
19.
Coombe
,
R. A.
.
Magnetohydrodynamic Generation of Electric Power
,
Reinhold Publishing Corporation
, NY, 1963.
20.
Sutton
,
G.
and
Sherman
,
A.
.
Engineering Magnetohydrodynamics
,
McGraw Hill
, New York, 1965.
21.
Aydin
,
M.
and
Yavuz
,
H.
,
Application of finite time thermodynamics to MHD power cycles
,
Energy
0360-5442, Vol.
18
(1993) pp.
907
911
.
22.
Sahin
,
B.
,
Kodal
,
A.
, and
Yavuz
,
H.
, 1996, “
A performance analysis for MHD power cycle operating at maximum power density
,”
J. Phys. D
0022-3727
29
, pp.
1473
1475
.
23.
El Haj Assad
,
M.
, and
Wu
,
C.
. 1999,
Finite time thermodynamic analysis of a MHD power plant. Recent advances in finite time thermodynamics
,
C.
Wu
,
L.
Chen
, and
J.
,
Chen
, eds.,
Nova Science Publishers
, pp.
239
248
.
24.
El Haj Assad
,
M.
, 2000, “
Thermodynamic analysis of an irreversible MHD power plant
,”
Int. J. Energy Res.
0363-907X,
24
, pp.
865
875
.
25.
Chen
,
L.
,
Gong
,
J.
,
Sun
,
F.
, and
Wu
,
C.
, 2002, “
Heat transfer effect on the performance of MHD power plant
,”
Energy Convers. Manage.
0196-8904,
43
, pp.
2085
2095
.
26.
Tiwari
,
V.
, 2002, “
Finite time thermodynamic analysis of gas turbine power cycles
,” M. Tech. thesis, Centre for Energy Studies, IIT Delhi, India.
You do not currently have access to this content.