The analysis of the combustion process and NOx emission in a gas-fired regenerative industrial furnace has been carried out numerically. The effect of the additive, methanol CH3OH, to the fuel on the NOx emission is studied. A moment closure method with the assumed β Probability Density Function (PDF) for the mixture fraction is used to model the turbulent non-premixed combustion process in the furnace. The combustion model is based on the assumption of instantaneous full chemical equilibrium. The P-1 model is chosen as the radiation model, and the Weighted-Sum-of-Gray-Gases Model is used to calculate the absorption coefficient. The numerical results showed that the use of CH3OH is effective in the reduction of NOx in a regenerative industrial furnace. The mechanism of NOx reduction by the use of CH3OH is also discussed.

1.
Hanson, R. K., and Salimian, S., 1984, “Survey of Rate Constants in H/N/O System,” Combustion Chemistry, ed. W. C. Gardiner.
2.
Zamansky
,
V. M.
,
Ho
,
L.
,
Maly
,
P. M.
, and
Seeker
,
W. R.
,
1996
, “
Oxidation of NO to NO2 by Hydrogen Peroxide and its Mixtures with Methanol in Natural Gas and Coal Combustion Gases
,”
Combust. Sci. Technol.
,
120
, pp.
255
272
.
3.
Kunz
,
R. G.
,
Keck
,
B. R.
, and
Pepasky
,
J. M.
,
1998
, “
Mitigation NOx by Steam Injection
,”
Hydrocarbon Process.
,
77
(
2
), pp.
79
84
.
4.
Odake
,
M.
,
Koike
,
N.
,
Tsukamoto
,
Y.
, and
Narusawa
,
K.
,
1992
, “
Optimizing Control of NOx and Smoke Emission for DI Engine with EGR and Methanol Fumigation
,”
SAE Tech. Pap. Ser.
,
9204, 68
, pp.
121
129
.
5.
Jones, D. G., Muzio, L. J., Stocker, E., Basel, M., Nuesch, P. C., Negrea, S., Lautenschlager, G., and Rose, G., 1989, “Two-Stage DeNOx Process Test Data for 300 TPD MSW Incineration Plant,” Proc. A & WMA Annual Meeting, Vol. 2, pp. 11–19.
6.
Zhang
,
C.
,
Ishii
,
T.
,
Hino
,
Y.
, and
Sugiyama
,
S.
,
2000
, “
The Numerical and Experimental Study of Non-premixed Combustion Flames in Regenerative Furnaces
,”
ASME Trans. J. Heat Transfer
,
122
, pp.
287
293
.
7.
Ishii
,
T.
,
Zhang
,
C.
, and
Sugiyama
,
S.
,
2000
, “
Effects of NO Models on the Prediction of NO Formation in a Regenerative Furnace
,”
ASME J. Energy Resour. Technol.
,
122
, pp.
224
228
.
8.
Chen
,
C.
,
Chang
,
K.
, and
Chen
,
J.
,
1994
, “
Application of a Robust β-pdf Treatment to Analysis of Thermal NO Formation in Non-premixed Hydrogen-Air Flame
,”
Combust. Flame
,
98
, pp.
375
390
.
9.
Cheng
,
P.
,
1964
, “
Two-Dimensional Radiating Gas Flow by a Moment Method
,”
AIAA J.
,
2
, pp.
1662
1664
.
10.
Siegel, R., and Howell, J. R., 1992, Thermal Radiation Heat Transfer, Hemisphere, Washington D.C.
11.
Coppalle
,
A.
, and
Vervisch
,
P.
,
1983
, “
The Total Emissivities of High-Temperature Flames
,”
Combust. Flame
,
49
, pp.
101
108
.
12.
Smith
,
T. F.
,
Shen
,
Z. F.
, and
Friedman
,
J. N.
,
1982
, “
Evaluation of Coefficients for the Weighted Sum of Gray Gases Model
,”
ASME J. Heat Transfer
,
104
, pp.
602
608
.
13.
Baulch
,
D. L.
,
Cobos
,
C. J.
,
Cox
,
R. A.
,
Frank
,
P.
,
Just
,
T.
,
Kerr
,
J. A.
,
Philling
,
M. J.
, and
Froe
,
J.
,
1992
, “
Evaluated Kinetic Data for Combustion Modeling
,”
J. Phys. Chem. Ref. Data
,
21
(
3
), pp.
411
734
.
14.
Westbrook
,
C.
, and
Dryer
,
F.
,
1984
, “
Chemical Kinetic Modeling of Hydrocarbon Combustion
,”
Progress in Energy and Combustion Science
,
10
(
1
), pp.
1
57
.
15.
Warnatz, J., 1991, “NOx Formation in High Temperature Processes,” Proc. European Gas Conference, pp. 303–320.
16.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Co., Washington, DC.
17.
van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
17
, pp.
147
163
.
18.
Gardiner, W. C., 1984, Combustion Chemistry, Springer-Verlag, New York.
You do not currently have access to this content.