Abstract

This paper describes a proton exchange membrane (PEM) fuel cell system model for automotive applications that includes an air compressor, cooling system, and other auxiliaries. The fuel cell system model has been integrated into a vehicle performance simulator that determines fuel economy and allows consideration of control strategies. Significant fuel cell system efficiency improvements may be possible through control of the air compressor and other auxiliaries. Fuel cell system efficiency results are presented for two limiting air compressor cases: ideal control and no control. Extension of the present analysis to hybrid configurations consisting of a fuel cell system and battery is currently under study.

1.
Brahma, A., Guezennec, Y., and Rizzoni, G., 2000, “Dynamic Optimization of Mechanical/Electrical Power Flow in Parallel Hybrid Electric Vehicles,” Proc., AVEC 2000, 5th International Symposium on Advanced Vehicle Control, Ann Arbor, MI, Aug.
2.
Paganelli
,
G.
,
Guerra
,
T. M.
,
Delprat
,
S.
,
Santin
,
J. J.
,
Delhom
,
M.
, and
Combes
,
E.
,
2000
, “
Simulation and Assessment of Power Control Strategies for a Parallel Hybrid Car
,”
Proc. Inst. Mech. Engin., Part D J Automob. Eng.
,
214
, No.
7
, pp.
705
717
.
3.
Delprat, S., Guerra, T. M., Paganelli, G., Lauber, J., and Delhom, M., 2001, “Control Strategy Optimization for a Hybrid Parallel Powertrain,” Proc. American Control Conference, Arlington, VA, June 25–27.
4.
Rizzoni, G., Guezennec, Y., Brahma, A., Wei, X., and Miller, T., 2000, “VP-SIM: A Unified Approach to Energy and Power Flow Modeling Simulation and Analysis of Hybrid Vehicles,” SAE Future Car Congress, Crystal City, VA, Apr., Paper 2000-01-1565.
5.
Hirschenhofer, J. H., Stauffer, D. B., Engleman, R. R., and Klett, M. G., 1998, Fuel Cell Handbook, Fourth Edition, DOE/FETC-99/1076.
6.
Thomas, S., and Zalbowitz, M., 1999, Fuel Cells Green Power, LA-UR-99-3231, Los Alamos National Laboratory, Los Alamos, NM.
7.
Appleby, A. J., and Foulkes, F. R., 1993, Fuel Cell Handbook, Krieger Publishing Company, Malabar, FL.
8.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
, No.
8
, pp.
2334
2342
.
9.
Srinivasan
,
S.
,
Velev
,
O. A.
,
Parthasarathy
,
O. A.
,
Mando
,
D. J.
, and
Appleby
,
A. J.
,
1991
, “
High Energy Efficiency and High Power Density Proton Exchange Membrane Fuel Cells—Electrode Kinetics and Mass Transport
,”
J. Power Sources
,
36
, pp.
299
320
.
10.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
,
1995
, “
Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell, I. Mechanistic Model Development
,”
J. Electrochem. Soc.
,
142
, No.
1
, pp.
1
8
Jan.
11.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
,
1995
, “
Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell, II. Empirical Model Development
,”
J. Electrochem. Soc.
,
142
, No.
1
, pp.
9
15
Jan.
12.
Mann
,
R. F.
,
Amphlett
,
J. C.
,
Hooper
,
M. A. I.
,
Jensen
,
H. M.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
,
2000
, “
Development and Application of a Generalized Steady-State Electrochemical Model for a PEM Fuel Cell
,”
J. Power Sources
,
86
, pp.
173
180
.
13.
Lee
,
J. H.
,
Lalk
,
T. R.
, and
Appleby
,
A. J.
,
1998
, “
Modeling Electrochemical Performance in Large Scale Proton Exchange Membrane Fuel Cell Stacks
,”
J. Power Sources
,
70
, pp.
258
268
.
14.
Gurau, V., Liu, H., and Kakac, S., 1998, “Mathematical Model for Proton Exchange Membrane Fuel Cells,” Proc. Advanced Energy Systems Division, ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, November 15–20, Vol. 38, pp. 205–214.
15.
Ogden
,
J. M.
,
Steinbugler
,
M. M.
, and
Kreutz
,
T. G.
,
1999
, “
A Comparison of Hydrogen, Methanol and Gasoline as Fuels for Fuel Cell Vehicles: Implications for Vehicle Design and Infrastructure Development
,”
J. Power Sources
,
79
, pp.
143
168
.
16.
Rodatz, P., Guzzella, L., and Pellizzari, L., 2000, “System Design and Supervisory Controller Development for a Fuel-Cell Vehicle,” Proc., 1st International Federation of Automatic Control Conference on Mechatronic Systems, Vol. 1, Darmstadt, Germany, September, 18–20, pp. 173–178.
17.
Johansson, K., and Alvfors, P., 2000, “Steady-State Model of a Proton Exchange Membrane Fuel Cell System for Automotive Applications,” Proc. International Symposium ECOS, From Thermo-Economics to Sustainability, Part 1, ed., G. G. Hirs, Universiteit Twente, Nederland, pp. 725–736.
18.
Barbir, F., Balasubramanian, B., and Neutzler, J., 1999, “Trade-off Design Analysis of Operating Pressure and Temperature in PEM Fuel Cell Systems,” Proc. Advanced Energy Systems Division, ASME International Mechanical Engineering Congress and Exposition, Nashville, TN, November 14–19, Vol. 39, pp. 305–315.
19.
Friedman, D. J., 1999, “Maximizing Direct-Hydrogen PEM Fuel Cell Vehicle Efficiency—Is Hybridization Necessary?” Fuel Cell Power for Transportation (SP-1425), SAE Publication Paper 1999-01-0530, pp. 9–17.
20.
Geyer, H. K., and Ahluwalia, R. K., 1998, GCtool for Fuel Cell Systems Design and Analysis: User Documentation, ANL-98/8, Argonne National Laboratory, Argonne, IL, for U.S. Department of Energy under Contract W-31-109-Eng-38.
21.
Bejan, A., Tsatsaronis, G., and Moran, M., 1996, Thermal Design and Optimization, John Wiley and Sons, Inc., New York, NY.
22.
Boettner, D., Paganelli, G., Guezennec, Y., Rizzoni, G., and Moran, M., 2001, “Component Power Sizing and Limits of Operation for Proton Exchange Membrane (PEM) Fuel Cell/Battery Hybrid Automotive Applications,” ASME International Mechanical Engineering Congress and Exposition, Session: Advanced Automotive Technologies—II, Session No. DSC-8, November 11–16.
23.
Boettner, D., 2001, “Modeling of PEM Fuel Cell Systems Including Controls and Reforming Effects for Hybrid Automotive Applications,” Ph.D. dissertation, The Ohio State University, Columbus, OH.
You do not currently have access to this content.