The thermodynamic performance of an encapsulated ice thermal energy storage (ITES) system for cooling capacity is assessed using exergy and energy analyses. A full cycle, with charging, storing, and discharging stages, is considered. The results demonstrate how exergy analysis provides a more realistic and meaningful assessment than the more conventional energy analysis of the efficiency and performance of an ITES system. The overall energy and exergy efficiencies are 99.5 and 50.9 percent, respectively. The average exergy efficiencies for the charging, discharging, and storing periods are 86, 60, and over 99 percent, respectively, while the average energy efficiency for each of these periods exceeds 99 percent. These results indicate that energy analysis leads to misleadingly optimistic statements of ITES efficiency. The results should prove useful to engineers and designers seeking to improve and optimize ITES systems. [S0195-0738(00)00904-3]

1.
Fields
,
W. M. G.
, and
Knebel
,
D. E.
,
1991
, “
Cost Effective Thermal Energy Storage
,”
Heat./Piping/Air Cond.
, July, pp.
59
72
.
2.
Dincer
,
I.
,
Dost
,
S.
, and
Li
,
X.
,
1997
, “
Performance Analyses of Sensible Heat Storage Systems for Thermal Applications
,”
Int. J. Energy Research
,
21
, pp.
1157
1171
.
3.
Beggs
,
C.
,
1991
, “
The Economics of Ice Thermal Storage
,”
Building Research and Information
,
19
, No.
6
, pp.
342
355
.
4.
Althof
,
J.
,
1989
, “
Economic Feasibility of Thermal Storage
,”
Heat./Piping/Air Cond.
, Sept., pp.
59
163
.
5.
Chen
,
C. S.
, and
Sheen
,
J. N.
,
1993
, “
Cost Benefit Analysis of a Cooling Energy Storage System
,”
IEEE Trans. Power Appar. Syst.
,
8
, No.
4
, pp.
1504
1510
.
6.
Wood
,
L. L.
,
Miedema
,
A. K.
, and
Cates
,
S. C.
,
1994
, “
Modeling the Technical and Economic Potential of Thermal Energy Storage Systems Using Pseudo-Data Analysis
,”
Resource and Energy Economics
,
16
, pp.
123
145
.
7.
Badar
,
M. A.
,
Zubair
,
S. M.
, and
Al-Farayedhi
,
A. A.
,
1993
, “
Second-Law-Based Thermoeconomic Optimization of a Sensible Heat Thermal Energy Storage System
,”
Energy—the International Journal
,
18
, No.
6
, pp.
641
649
.
8.
Domanski
,
R.
, and
Fellah
,
G.
,
1998
, “
Thermoeconomic Analysis of Sensible Heat, Thermal Energy Storage Systems
,”
Appl. Therm. Eng.
,
18
, No.
8
, pp.
693
704
.
9.
Tribus, M., and Evans, R. B., 1962, A Contribution to the Theory of Thermoeconomics, Report No. 62–36, UCLA, Los Angeles, CA.
10.
Ahern, J. E., 1980, The Exergy Method of Energy System Analysis, Wiley, New York, NY.
11.
Bjurstrom
,
H.
, and
Carlsson
,
B.
,
1985
, “
An Exergy Analysis of Sensible and Latent Heat Storage
,”
Heat Recovery Systems
,
5
, pp.
233
250
.
12.
Krane
,
R. J.
,
1987
, “
A Second Law Analysis of the Optimum Design and Operation of Thermal Energy Storage Systems
,”
Int. J. Heat Mass Transf.
,
30
, pp.
43
57
.
13.
Hahne, E., Kubler, R., and Kallewit, J., 1989, “The Evaluation of Thermal Stratification by Exergy,” in Energy Storage Systems, eds., B. Kilkis and S. Kakac, Kluwer Academic Publishers, Dordecht, The Netherlands, pp. 465–485.
14.
Rosen, M. A., and Hooper, F. C., 1991, “A General Method for Evaluating the Energy and Exergy Contents of Stratified Thermal Energy Storages for Linear-Based Storage Fluid Temperature Distributions,” Proc. 17th Annual Conference of the Solar Energy Society of Canada, Toronto, Ontario, Canada, pp. 182–187.
15.
Rosen, M. A., and Hooper, F. C., 1991, Evaluating the Energy and Exergy Contents of Stratified Thermal Energy Storages for Selected Storage-Fluid Temperature Distributions, Proc. Biennial Congress of International Solar Energy Society, Denver, CO, pp. 1961–1966.
16.
Gunnewiek
,
L. H.
,
Nguyen
,
S.
, and
Rosen
,
M. A.
,
1993
, “
Evaluation of The Optimum Discharge Period for Closed Thermal Energy Storages Using Energy and Exergy Analyses
,”
Sol. Energy
,
51
, pp.
39
43
.
17.
Bejan, A., 1994, Entropy Generation Through Heat and Fluid Flow, Wiley, New York, NY.
18.
Bascetincelik
,
A.
,
Ozturk
,
H. H.
,
Paksoy
,
H. O.
, and
Demirel
,
Y.
,
1998
, “
Energetic and Exergetic Efficiency of Latent Heat Storage System for Greenhouse Heating
,”
Renewable Energy
,
16
, Nos.
1–4
, pp.
691
694
.
19.
Rosen
,
M. A.
,
Pedinelli
,
N.
, and
Dincer
,
I.
,
1999
, “
Energy and Exergy Analyses of Cold Thermal Storage Systems
,”
Int. J. Energy Research
,
23
, No.
12
, pp.
1029
1038
.
20.
Rosen
,
M. A.
,
1992
, “
Appropriate Thermodynamic Performance Measures for Closed Systems for Thermal Energy Storage
,”
ASME J. Sol. Energy Eng.
114
, pp.
100
105
.
21.
Moran, M. J., and Shapiro, H. N., 2000, Fundamentals of Engineering Thermodynamics, 4th Edition, Wiley, Toronto, Ontario, Canada.
22.
Rosen
,
M. A.
, and
Dincer
,
I.
,
1997
, “
On Exergy and Environmental Impact
,”
Int. J. Energy Research
,
21
, pp.
643
654
.
23.
Beckman, G., and Gilli, P. V., 1984, Thermal Energy Storage, Springer-Verlag, New York, NY.
24.
Pedinelli, N. Rosen, M. A., and Hooper, F. C., 1993, “Thermodynamic Assessment of Cold Capacity Thermal Energy Storage Systems,” Proc. International Conference on Energy Systems and Ecology, Cracow, Poland, pp. 705–712.
25.
Carrier, 1990, Encapsulated Ice Storage, USA.
You do not currently have access to this content.