Thermodynamic analyses of compressor-driven metal hydride refrigerators predict a high coefficient of performance. Comparison with the results from a computational model indicates that the coefficient of performance attainable from an actual system operating under transient conditions can indeed be significant. Parametric calculations are given which illustrate the ideal power-efficiency operating characteristics of the system. The computed efficiency approaches the thermodynamic efficiency as the operating power tends to zero.

1.
Bowman, R. C., 1995, “Fabrication and Testing of the Metal Hydride Sorbent Bed Assembly for a Periodic 10 K Sorption Cryocooler,” Cryocoolers 8, Ross, R. G., Jr. ed., Plenum Press, pp. 601–608.
2.
Choi
H.
,
Mills
A. F.
,
1991
, “
Metal Hydride Heat Pumps for Upgrading Spacecraft Waste Heat
,”
Journal of Thermophysics
, Vol.
5
(
2
), pp.
135
141
.
3.
Dantzer
P.
, and
Orgaz
E.
,
1986
, “
Thermodynamics of Hydride Chemical Heat Pump—II. How to Select a Pair of Alloys
,”
International Journal of Hydrogen Energy
, Vol.
11
(
12
), pp.
797
806
.
4.
Gambini
M.
,
1994
, “
Metal Hydride Energy Systems Performance Evaluation. Part A: Dynamic Analysis Model of Heat and Mass Transfer
,”
International Journal of Hydrogen Energy
, Vol.
19
(
1
), pp.
67
80
.
5.
Gopal
M. R.
, and
Murthy
S. S.
,
1995
, “
Performance of a Metal Hydride Cooling System
,”
International Journal of Refrigeration
, Vol.
18
(
6
), pp.
413
421
.
6.
Gordon
J. M.
, and
Huleihil
M.
,
1992
, “
General Performance Characteristics of Real Heat Engines
,”
Journal of Applied Physics
, Vol.
72
(
3
), pp.
829
837
.
7.
Gordon
J. M.
,
1991
, “
Generalized Power versus Efficiency Characteristics of Heat Engines: the Thermoelectric Generator as an Instructive Illustration
,”
American Journal of Physics
, Vol.
56
(
6
), pp.
551
555
.
8.
Huston
E. L.
, and
Sandrock
G. D.
,
1980
, “
Engineering Properties of Metal Hydrides
,”
Journal of Less Common Metals
, Vol.
74
, pp.
435
443
.
9.
Kim
K. J.
,
Feldman
K. T.
,
Lloyd
G. M.
,
Razani
A.
, and
Shanahan
K. L.
,
1998
a, “
Performance of High Power Metal Hydride Reactors
,”
International Journal of Hydrogen Energy
, Vol.
23
(
5
), pp.
355
362
.
10.
Kim, K. J., Feldman, K. T., Lloyd, G., and Razani, A., 1998b, “Compressor Driven Heat Pump Development Employing Porous Metal Hydride Compacts,” ASHRAE Paper SF-78-18-4.
11.
Kim
K.
,
Feldman
K. T.
,
Lloyd
G.
, and
Razani
A.
,
1997
, “
Compressor-Driven Metal-Hydride Heat Pumps
,”
Applied Thermal Engineering
, Vol.
17
(
6
), pp.
551
560
.
12.
Lloyd
G.
,
Razani
A.
, and
Feldman
K. T.
,
1998
a, “
Transitional Reactor Dynamics Affecting Optimization of a Heat-Driven Metal Hydride Refrigerator
,”
International Journal of Heat Mass Transfer
, Vol.
41
(
3
), pp.
513
427
.
13.
Lloyd
G.
,
Kim
K. J.
,
Razani
A.
, and
Feldman
K. T.
,
1998
b, “
Thermal Conductivity Measurements of Metal Hydride Compacts Developed for High Power Reactors
,”
Journal of Thermophysics and Heat Transfer
, Vol.
12
(
2
), pp.
132
137
.
14.
Lloyd, G. M., Razani, A., Feldman, K. T., Jr., 1996, “Computational Study of a MmNi4.15Fe0.85 Compressor-Driven Metal Hydride Refrigerator,” Proceedings, International Absorption Heat Pump Conference, Montreal, Canada, September 20, pp. 513–520.
15.
Lloyd
G. M.
,
Razani
A.
, and
Feldman
K. T.
,
1995
a, “
Fundamental Issues Involved in a Theoretical Description of the Heat and Mass Transfer Occuring in Coupled Porous Metal Hydride Reactors
,”
International Mechanical Engineering Congress Exposition
, ASME PID-Vol.
2
, pp.
671
681
.
16.
Lloyd
G. M.
,
Razani
A.
, and
Feldman
K. T.
,
1995
b, “
Design of Absorption Hydride Heat Pump: Use of 1-D Model in Focusing Media Development and Refinement
,”
International Mechanical Engineering Congress Exposition
, ASME ASE-Vol.
34
, pp.
205
210
.
17.
Maeda
H.
,
Kubo
H.
,
Hiroshi
A.
, and
Hiroyuki
M.
,
1991
, “
Compression-Type Metal Hydride Heat Pump System
,”
Transactions of the Japan Society of Mechanical Engineers Part B
, Vol.
57
(
543
), pp.
3925
3930
.
18.
Panchal
C. B.
, and
Rabas
T. J.
,
1993
, “
Thermal Performance of Advanced Heat Exchangers for Ammonia Refrigeration Systems
,”
Heat Transfer Engineering
, Vol.
14
(
4
), pp.
42
57
.
19.
Prakash, P., 1978, “Performance Analysis of Positive Displacement Refrigeration Compressors,” Ph.D. dissertation, Purdue University, Lafayette, IN.
20.
Spinner
B.
,
1993
, “
Ammonia-Based Thermochemical Transformers
,”
Heat Recovery Systems & CHP
, Vol.
13
(
4
), pp.
301
307
.
21.
Stoecker, W. F., 1990, “Ammonia Vapor Releases,” Heating, Piping, Air Conditioning, pp. 69–77.
22.
Vineyard, E. A., Sand, J. R., and Bohman, R. H., 1995, “Evaluation of Design Options for Improving the Energy Efficiency of an Environmentally Safe Domestic Refrigerator-Freezer,” ASHRAE Paper CH-95-24-2.
23.
White, F. M., 1991, Viscous Fluid Flow, 2nd Edition, McGraw-Hill Inc., New York, NY, p. 50.
24.
Wolf, S., 1975, “Hydrogen Sponge Heat Pump,” Intersociety Energy Conversion Engineering Conference Paper 759196, pp. 1348–1355.
This content is only available via PDF.
You do not currently have access to this content.