Fully developed laminar axial flow of yield-power-law fluids in eccentric annuli has been investigated numerically. The annuli may be fully open or partially blocked. General nonorthogonal, boundary-fitted curvilinear coordinates have been used to accurately model the irregular annular geometry due to the presence of a flow blockage. A computer code has been developed using a second-order finite-difference scheme. An exponential model for the shear stress, valid for both yielded and un-yielded regions of the flow, is used in the computation. The effects of pressure gradient, eccentricity, and blockage height on the flow rate have been studied and the results are presented. The flow rate is found to increase with increasing eccentricity for eccentric annuli without any blockage. For partially blocked eccentric annuli, the flow rate at a particular eccentricity decreases as the blockage height is increased.

1.
Abdali
S. S.
,
Mitsoulis
E.
, and
Markatos
N. C.
,
1992
, “
Entry and Exit Flows of Bingham Fluids
,”
Journal of Rheology
, Vol.
36
, pp.
389
407
.
2.
Azouz
I.
,
Siamack
A. S.
,
Pilehvari
A.
, and
Azar
J. J.
,
1991
, “
Numerical Simulation of Laminar Flow of Power-Law Fluids in Conduits of Arbitrary Cross Section
,”
Recent Development in Non-Newtonian Flows and Industrial Applications
, ASME FED-Vol.
124
, pp.
73
79
.
3.
Azouz
I.
,
Siamack
A. S.
,
Pilehvari
A.
, and
Azar
J. J.
,
1993
, “
Numerical Simulation of Laminar Flow of Yield-Power-Law Fluids in Conduits of Arbitrary Cross Section
,”
ASME Journal of Fluids Engineering
, Vol.
115
, pp.
710
716
.
4.
Beverly
C. R.
, and
Tanner
R. I.
,
1992
, “
Numerical Analysis of Three-Dimensional Bingham Plastic Flow
,”
Journal of Non-Newtonian Fluid Mechanics
, Vol.
42
, pp.
85
115
.
5.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, John Wiley and Sons, New York, NY.
6.
Ellwood
K. R.
,
Georgiou
G. C.
,
Papanastasiou
T. C.
, and
Wilkes
O.
,
1990
, “
Laminar Jets of Bingham-Plastic Liquids
,”
Journal of Rheology
, Vol.
34
, pp.
787
812
.
7.
Fredrickson
A. G.
, and
Bird
R. B.
,
1958
, “
Non-Newtonian Flow in Annuli
,”
Industrial and Engineering Chemistry
, Vol.
50
, pp.
347
352
.
8.
Guckes
T. L.
,
1975
, “
Laminar Flow of Non-Newtonian Fluids in an Eccentric Annulus
,”
TRANS. ASME
, Vol.
97
, Part 1, pp.
498
506
.
9.
Haciislamoglu
M.
, and
Langlinais
J.
,
1990
, “
Non-Newtonian Flow in Eccentric Annuli
,”
ASME JOURNAL OF ENERGY RESOURCES TECHNOLOGY
, Vol.
112
, pp.
163
169
.
10.
Hanks
W. H.
,
1979
, “
The Axial Laminar Flow of Yield-Pseudoplastic Fluids in a Concentric Annulus
,”
Industrial and Engineering of Chemistry Process Design and Development
, American Chemical Society, Vol.
18
, pp.
488
493
.
11.
Hussain
Q. E.
, and
Sharif
M. A. R.
,
1996
, “
Numerical Simulation of Drilling-Mud Flow in Eccentric Annulus Partially Blocked by Cuttings Deposition
,”
Eighteenth Southeastern Conference on Theoretical and Applied Mechanics, Developments in Theoretical and Applied Mechanics
, Vol.
XVIII
, eds., Wilson, H. B., Batra, R. C., Bert, C. W., Davis, A. M. J., Schapery, R. A., Stewart, D. S., and Swinson, F. F., pp.
162
174
.
12.
Hussain
Q. E.
, and
Sharif
M. A. R.
,
1997
, “
Viscoplastic Fluid Flow in Irregular Eccentric Annuli Due to Axial Motion of the Inner Pipe
,”
Canadian Journal of Chemical Engineering
, Vol.
75
, pp.
1038
1045
.
13.
Mitsoulis
E.
,
Abdali
S. S.
, and
Markatos
N. C.
,
1993
, “
Flow Simulation of Herschel-Bulkley Fluids through Extrusion Dies
,”
Canadian Journal of Chemical Engineering
, Vol.
71
, pp.
147
160
.
14.
Mitsuishi
N.
, and
Aoyagi
Y.
,
1973
, “
Non-Newtonian Fluid Flow in an Eccentric Annulus
,”
Journal of Chemical Engineering of Japan
, Vol.
6
, pp.
402
408
.
15.
Nouri
J. M.
,
Umur
H.
, and
Whitelaw
J. H.
,
1993
, “
Flow of Newtonian and non-Newtonian Fluids in Concentric and Eccentric Annuli
,”
Journal of Fluid Mechanics
, Vol.
253
, pp.
617
641
.
16.
Papanastasiou
T. C.
,
1987
, “
Flows of Materials with Yield
,”
Journal of Rheology
, Vol.
31
, pp.
385
404
.
17.
Pham
T. V.
, and
Mitsoulis
E.
,
1994
, “
Entry and Exit flows of Casson Fluids
,”
Canadian Journal of Chemical Engineering
, Vol.
72
, pp.
1080
1084
.
18.
Vradis
G. C.
,
Dougher
J.
, and
Kumar
S.
,
1993
, “
Entrance Pipe Flow and Heat Transfer for a Bingham Plastic
,”
International Journal of Heat and Mass Transfer
, Vol.
36
, pp.
543
552
.
19.
Zamora
M.
, and
Jefferson
D. T.
,
1993
, “
Flow Visualization of Solids Transport by Drilling Fluids in Inclined Wells
,”
Developments in Non-Newtonian Flows
, ASME AMD-Vol.
175
, pp.
115
130
.
This content is only available via PDF.
You do not currently have access to this content.