It is shown that to maximize the power output of a power plant is equivalent to minimizing the total entropy generation rate associated with the power plant. This equivalence is illustrated by using two of the oldest and simplest models of power plants with heat transfer irreversibilities. To calculate the total entropy generation rate correctly, one must recognize that the optimization process (e.g., the variability of the heat input) requires “room to move,” i.e., an additional, usually overlooked, contribution to the total entropy generation rate.

1.
Bejan, A., 1982, Entropy Generation through Heat and Fluid Flow, Wiley, New York, NY, p. 24.
2.
Bejan, A., 1988, Advanced Engineering Thermodynamics, Wiley, New York, NY, Chap. 8.
3.
Bejan
A.
,
1994
, “
Engineering Advances on Finite-Time Thermodynamics
,”
American Journal of Physics
, Vol.
62
, pp.
11
12
.
4.
Benjan, A., 1996a, Entropy Generation Minimization, CRC Press, Boca Raton, FL.
5.
Benjan
A.
,
1996
b, “
Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite-Time Processes
,”
Journal of Applied Physics
, Vol.
79
, pp.
1191
1218
.
6.
Chambadal, P., 1957, Les Centrales Nuclearies, Armand Colin, Paris, France, pp. 41–58.
7.
Chambadal
P.
,
1958
, “
Le Choix du Cycle Thermique dans une Usine Generatrice Nucleaire
,”
Rev. Gen. de I’Electricite
, Vol.
67
, pp.
332
345
.
8.
Chambadal, P., 1963, Evolution et Applications du Concept d’Entropie, Sect. 30, Dunod, Paris, France.
9.
Curzon
F. L.
, and
Ahlborn
B.
,
1975
, “
Efficiency of a Carnot Engine at Maximum Power Output
,”
American Journal of Physics
, Vol.
43
, pp.
22
24
.
10.
De Lucia
M.
, and
Benjan
A.
,
1990
, “
Thermodynamics of Energy Storage by Melting due to Conduction or Natural Convection
,”
ASME Journal of Solar Energy Engineering
, Vol.
112
, pp.
110
116
.
11.
De Lucia
M.
, and
Benjan
A.
,
1991
, “
Thermodynamics of Phase-Change Energy Storage: The Effects of Liquid Superheating During Melting, and Irreversibility During Solidification
,”
ASME Journal of Solar Energy Engineering
, Vol.
113
, pp.
2
10
.
12.
El-Wakil, M. M., 1962, Nuclear Power Engineering, McGraw-Hill, New York, NY, pp. 162–165.
13.
El-Wakil, M. M., 1971, Nuclear Energy Conversion, International Textbook Co., Scranton, PA. pp. 31–35.
14.
Lim
J. S.
,
Benjan
A.
, and
Kim
J. H.
,
1992
, “
Thermodynamic Optimization of Phase-change Energy Storage Using Two or More Materials
,”
ASME JOURNAL OF ENERGY RESOURCES TECHNOLOGY
, Vol.
114
, pp.
84
90
.
1.
Novikov
I. I.
,
1957
, “
The Efficiency of Atomic Power Stations
,”
Atomnaya Engergiya
, Vol.
3
(
11
), p.
409
409
;
2.
1958
, English transl.,
Journal Nuclear Energy II
, Vol.
7
, pp.
125
128
.
1.
Novikov, I. I., 1984, Thermodynamics, Mashinostroenie, Moscow, Russia.
2.
Novikov, I. I., and Voskresenskii, K. D., 1977, Thermodynamics and Heat Transfer, Atomizdat, Moscow, Russia.
3.
Salamon
P.
, and
Nitzan
A.
,
1981
, “
Finite Time Optimization of a Newton’s Law Carnot Cycle
,”
Journal of Chemistry and Physics
, Vol.
74
, pp.
3546
3560
.
4.
Salamon
P.
,
Nitzan
A.
,
Andresen
B.
, and
Berry
R. S.
,
1980
, “
Minimum Entropy Production and the Optimization of Heat Engines
,”
Physics Review A
, Vol.
21
, pp.
2115
2129
.
5.
Vukalovich, M. P., and Novikov, I. I., 1972, Thermodynamics, Mashinostroenie, Moscow, Russia.
This content is only available via PDF.
You do not currently have access to this content.