This paper describes the mathematical formulation of a Perkins-Kern-Nordgren (PKN) fracture model, that accounts for the existence of poroelastic effects in the reservoir. The poroelastic effects, induced by leak-off of the fracturing fluid, are treated in a manner consistent with the basic assumptions of the PKN model, by means of a transient influence function. The fracture model is formulated in a moving coordinates system and solved using an explicit finite difference technique. The numerical algorithm has the following features: fixed mesh, adaptive control of the time step, and unconstrained fracture length during shut-in. Numerical simulation with this model indicates that poroelastic processes could be responsible for a significant increase of the treatment pressure, but that they have virtually no influence on the fracture length and fracture width.

This content is only available via PDF.
You do not currently have access to this content.