An optimal thermal design of a considered system configuration is conveniently decided when the system is modeled as made up of one thermodynamic subsystem and of the essential number of design subsystems. The thermodynamic subsystem decides the performance of the components and the design subsystems decide their best matching geometry and costs. An optimizer directs all decisions to an extremum of a given objective function. This decomposition strategy is illustrated by investigating the optimal values of seven decision design variables for a regenerative gas turbine power cycle when a cost-objective function is minimized. The results seen from the point of view of second law analysis and costing are discussed.

This content is only available via PDF.
You do not currently have access to this content.