The combustion of lean mixtures of methane, representing natural gas, in air is examined analytically employing a detailed chemical kinetic scheme involving 14 species and made up of 32 reaction steps that proceed simultaneously. The changes with time in the concentrations of the major relevant reactive species are determined throughout, right from the commencement of the preignition reactions to the time of achieving near equilibrium conditions. The results of such an approach to the combustion process are considered over a wide range of temperature (1200 K–2200 K) and equivalence ratios (from 0.20 to the stoichiometric value). Information is then presented in relation to some important combustion parameters that included the ignition delay, overall reaction rates and the times needed for completing the combustion process. Some guidelines are suggested for effecting eventually improved energy utilization and reduced environmental pollution from combustion processes involving lean mixtures of methane and air.

This content is only available via PDF.
You do not currently have access to this content.