Acrylic plastic viewports have been used for over 40 yr in pressure vessels for human occupancy without any catastrophic failure resulting in a loss of life. However, there are special applications, such as for example in hyperbaric chambers for medical purposes, where the susceptibility of flexure stressed acrylic plastic to surface crazing and cracking in the presence of common organic solvents contained in antibacterial sprays is a distinct disadvantage. To solve this problem, a search has been initiated for transparent plastics that are not attacked by organic solvents and can be cast economically in thick sections. Allyl diglycol carbonate plastic appears not only to satisfy the foregoing requirement, but also to provide better resistance to abrasion, pitting, and X-ray or gamma irradiation than acrylic plastic. Short-term, long-term, and cyclic pressure testing has been conducted on over one hundred allyl diglycol carbonate plane disk viewports with t/D0 ratio in the 0.06 to 0.4 range and temperature in the 4°C to + 52°C (+40F to 125°F) range. It appears that plane disks cast from allyl diglycol carbonate plastic can perform safely as pressure-resistant viewports in pressure vessels for human occupancy. It is recommended that for such an application their design temperature be limited to under 52°C (125°F), and that their design pressure at 52°C (125°F) design temperature not exceed 4 percent of their (STCP) short-term critical pressure at 24°C (75°F).

This content is only available via PDF.
You do not currently have access to this content.