The study reported in this paper deals with the development of a dynamic model for the analysis of elastically supported gyroscopic absorber systems for ship stabilization. The gryoscopes are mounted on elastically supported platforms at the fore and aft ends of the ship to minimize both the roll and pitch movements. Springs and dampers are also utilized between the gyroscope gimbal and the platform. Several design configurations of the absorber are considered. Optimal design procedures are utilized to find the system parameters for best performance in each case. The performance of the resulting optimum absorber shows that introducing the elastic spring and damper between the gimbal and platform has a significant effect on reducing the ship-roll action.

This content is only available via PDF.
You do not currently have access to this content.