Methanol-coal slurries are known to behave as homogeneous non-Newtonian suspensions. Darby has shown that the Casson and Bingham models reasonably describe the rheology of methanol-lignite slurries. Theoretical methods are available for predicting critical velocities for Bingham model slurries, but none exist for Casson model slurries. Theoretical equations and design curves are derived and presented for Casson model slurries. These are based upon a proven general theory for transition critical velocities. These results are the essential first phase of a coordinated theory-based design method for transitional and turbulent flow of methanol-coal slurries and any other slurries having Casson-model rheology.

This content is only available via PDF.
You do not currently have access to this content.