A complex power system may be modeled by a system of inequalities representing the constraints imposed by the physical laws: heat transfer, energy balance, cycle efficiency and so forth. The nature of the resulting mathematical model is such that the terms contain complex expressions involving the design and operating variables of the process. With the addition of an objective function involving the cost of major system components, a multivariable nonlinear programming problem can be formulated. Seldom does the model lend itself to analytical treatment. This paper is concerned with a specific formulation and solution of nonlinear programming problems which arise in the design of ocean thermal energy conversion (OTEC) power plants. The technique used is geometric programming, GP. It is shown that GP serves as an excellent tool for system analysis because it provides sensitivity information essential to the designer.

This content is only available via PDF.
You do not currently have access to this content.