Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-20 of 90
Computer simulation
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Accepted Manuscript
Journal:
Journal of Electronic Packaging
Article Type: Review Articles
J. Electron. Packag.
Paper No: EP-21-1007
Published Online: March 1, 2021
Abstract
The scope of review of this paper focused on the pre-curing underfilling flow stage of encapsulation process. A total of 80 related works has been reviewed and being classified into process type, method employed, and objective attained. Statistically showed that the conventional capillary is the most studied underfill process, while the numerical simulation was mainly adopted. Generally, the analyses on the flow dynamic and distribution of underfill fluids in the bump array aimed for the filling time determination as well as the predictions of void occurrence. Parametric design optimization was subsequently conducted to resolve the productivity issue of long filling time and reliability issue of void occurrence. The bump pitch was found to the most investigated parameter, consistent to the miniaturization demand. To enrich the design versatility and flow visualization aspects, experimental test vehicle was innovated using imitated chip and replacement fluid, or even being scaled-up. Nonetheless, the analytical filling time models became more accurate and sophiscasted over the years, despite still being scarce in number. With the technological advancement on analysis tools and further development of analytic skills, it was believed that the future researches on underfill flow will become more comprehensive, thereby leading to the production of better packages in terms of manufacturing feasibility, performances, and reliability. Lastly, few potential future works were recommended, for instance, microscopic analysis on the bump-fluid interaction, consideration of filler particles and incorporation of artificial intelligence.
Journal Articles
Journal:
Journal of Electronic Packaging
Article Type: Research-Article
J. Electron. Packag. June 2021, 143(2): 021004.
Paper No: EP-20-1046
Published Online: September 3, 2020
Abstract
This paper presents an experimentally validated modeling methodology for a new type of blower design known as volumetric resistance blower (VRB). It replaces the traditional centrifugal blower fan blades with a continuous porous medium disk and has been reported to be capable of providing a lower acoustic noise for the same output flow compared to a traditional blower. A three-dimensional transient numerical model of VRB is developed which incorporates the movement of a porous rotor using experimentally determined foam parameters to characterize the porous drag effect and a sliding mesh to simulate the rotation effect. The numerical results are validated with experimentally determined fan curve over broad range of operating conditions. The effect of the foam resistance parameters on the flow characteristics is investigated which serves the rationale for the optimization of these parameters. The model is used to study the sensitivity of the VRB performance to foam parameters using different types of commercially available open-cell reticulated foam.
Journal Articles
Journal:
Journal of Electronic Packaging
Article Type: Research-Article
J. Electron. Packag. September 2020, 142(3): 031106.
Paper No: EP-19-1098
Published Online: April 24, 2020
Abstract
This work will specifically detail the development of a processing and fabrication route for a three-dimensional asynchronous field-programmable gate array (3D-AFPGA) design based on an extension of pre-existing two-dimensional-field-programmable gate array (2D-FPGA) tile designs. The periodic nature of FPGAs permits the use of an alternative approach, whereby the design entails splitting the FPGA design along tile borders and inserting through silicon vias (TSVs) at regular spatial intervals. This serves to enable true 3D performance (i.e., full 3D signal routing) while leaving most of the 2D circuit layouts intact. 3D signal buffers are inserted to handle communication between vertical and adjacent neighbors. For this approach, the density of vertical interconnections was shown to be determined by the size of the bond pads used for tier–tier communications and bonding. As a consequence, reducing bond pad dimensions from 25 μ m to 15 μ m, or 10 μ m, bond pads are preferred to increase the connectivity between layers. A 3D-AFPGA mockup test structure was then proposed for completing development and exercising the 3D integration process flows. This mockup test structure consists of a three-tier demonstration vehicle consisting of a chip-to-wafer and a subsequent chip-to-chip bond. Besides, an alternate copper bonding approach using pillars was explored. Although the intended application is for the 3D integration process compatible with the 3D AFPGA design, the test structure was also designed to be generally applicable to various applications for 3D integration. Because of the importance of thermal management of 3D-AFPGA, it is important to predict the temperature distribution and avoid the maximum junction temperature. The numerical thermal modeling for predicting the equivalent thermal conductivity in every layer and the 3D temperature distribution in the 3D-AFPGA are developed and discussed as well.
Journal Articles
Journal:
Journal of Electronic Packaging
Article Type: Research-Article
J. Electron. Packag. December 2019, 141(4): 041005.
Paper No: EP-18-1069
Published Online: July 12, 2019
Abstract
Data center energy usage keeps growing every year and will continue to increase with rising demand for ecommerce, scientific research, social networking, and use of streaming video services. The miniaturization of microelectronic devices and an increasing demand for clock speed result in high heat flux systems. By adopting direct liquid cooling, the high heat flux and high power demands can be met, while the reliability of the electronic devices is greatly improved. Cold plates which are mounted directly on to the chips facilitate a lower thermal resistance path originating from the chip to the incoming coolant. An attempt was made in the current study to characterize a commercially available cold plate which uses warm water in carrying the heat away from the chip. A mock package mimicking a processor chip with an effective heat transfer area of 6.45 cm 2 was developed for this study using a copper block heater arrangement. The thermo-hydraulic performance of the cold plates was investigated by conducting experiments at varying chip power, coolant flow rates, and coolant temperature. The pressure drop ( Δ P) and the temperature rise (ΔT) across the cold plates were measured, and the results were presented as flow resistance and thermal resistance curves. A maximum heat flux of 31 W/cm 2 was dissipated at a flow rate of 13 cm 3 /s. A resistance network model was used to calculate an effective heat transfer coefficient by revealing different elements contributing to the total resistance. The study extended to different coolant temperatures ranging from 25 °C to 45 °C addresses the effect of coolant viscosity on the overall performance of the cold plate, and the results were presented as coefficient of performance (COP) curves. A numerical model developed using 6SigmaET was validated against the experimental findings for the flow and thermal performance with minimal percentage difference.
Journal Articles
Journal:
Journal of Electronic Packaging
Article Type: Research-Article
J. Electron. Packag. September 2019, 141(3): 031008.
Paper No: EP-18-1108
Published Online: May 17, 2019
Abstract
The flow field inside the heat exchangers is associated with maximum heat transfer and minimum pressure drop. Designing a heat exchanger and employing various techniques to enhance its overall performance has been widely investigated and is still an active research. The application of elliptic tube is an effective alternative to circular tube which can reduce the pressure drop significantly. In this study, numerical simulation and optimization of variable tube ellipticity is studied. The three-dimensional numerical analysis and a multi-objective genetic algorithm (MOGA) with surrogate modeling are performed. Tubes in staggered arrangement in fin-and-tube heat exchanger are investigated for combination of various elliptic ratios and Reynolds numbers. Results show that increasing elliptic ratio increases the friction factor due to increased flow blocking area, however, the effect on the Colburn factor is not significant. Moreover, tube with lower elliptic ratio followed by higher elliptic ratio tube has better thermal-hydraulic performance. To achieve the best overall performance, the Pareto optimal strategy is adopted for which the computational fluid dynamics (CFD) results, artificial neural network (ANN), and MOGA are combined. The tubes elliptic ratio and Reynolds number are the design variables. The objective functions include Colburn factor (j) and friction factor (f). The CFD results are input into ANN model. Once the ANN is computed, it is then used to estimate the model responses as a function of inputs. The final trained ANN is used to drive the MOGA to obtain the Pareto optimal solution. The optimal values of these parameters are finally presented.
Journal Articles
Journal:
Journal of Electronic Packaging
Article Type: Research-Article
J. Electron. Packag. March 2017, 139(1): 011004.
Paper No: EP-16-1075
Published Online: December 29, 2016
Abstract
Thermal interface materials (TIMs) constitute a critical component for heat dissipation in electronic packaging systems. However, the extent to which a conventional steady-state thermal characterization apparatus can resolve the interfacial thermal resistance across current high-performance interfaces (R T < 1 mm 2 ⋅K/W) is not clear. In this work, we quantify the minimum value of R T that can be measured with this instrument. We find that in order to increase the resolution of the measurement, the thermal resistance through the instrument's reference bars must be minimized relative to R T . This is practically achieved by reducing reference bar length. However, we purport that the minimization of reference bar length is limited by the effects of thermal probe intrusion along the primary measurement pathway. Using numerical simulations, we find that the characteristics of the probes and surrounding filler material can significantly impact the measurement of temperature along each reference bar. Moreover, we find that probes must be spaced 15 diameters apart to maintain a uniform heat flux at the interface, which limits the number of thermal probes that can be used for a given reference bar length. Within practical constraints, the minimum thermal resistance that can be measured with an ideal instrument is found to be 3 mm 2 ⋅K/W. To verify these results, the thermal resistance across an indium heat spring material with an expected thermal contact resistance of ∼1 mm 2 ⋅K/W is experimentally measured and found to differ by more than 100% when compared to manufacturer-reported values.
Journal Articles
Journal:
Journal of Electronic Packaging
Article Type: Research-Article
J. Electron. Packag. September 2016, 138(3): 031008.
Paper No: EP-16-1014
Published Online: July 28, 2016
Abstract
Solid liquid phase-change materials (PCMs) present a promising approach for reducing data center cooling costs. We review prior research in this area. A shell-and-tube PCM thermal energy storage (TES) unit is then analyzed numerically and experimentally. The tube bank is filled with commercial paraffin RUBITHERM RT 28 HC PCM, which melts as the heat transfer fluid (HTF) flows across the tubes. A fully implicit one-dimensional control volume formulation that utilizes the enthalpy method for phase change has been developed to determine the transient temperature distributions in both the PCM and the tubes themselves. The energy gained by a column of tubes is used to determine the exit bulk HTF temperature from that column, ultimately leading to an exit HTF temperature from the TES unit. This paper presents a comparison of the numerical and experimental results for the transient temperature profiles of the PCM-filled tubes and HTF.
Journal Articles
Journal:
Journal of Electronic Packaging
Article Type: Research-Article
J. Electron. Packag. June 2016, 138(2): 021003.
Paper No: EP-15-1057
Published Online: April 19, 2016
Abstract
The phosphor dip-transfer coating method is simple and flexible for transferring a pre-analyzed volume of phosphor gel, which can be beneficial to the high angular color uniformity (ACU) of white light-emitting diodes (LEDs). The crux of this method is the volume control of the phosphor gel; however, the critical factors which influence the volume control remain unrevealed. In this paper, we concentrate on investigating the transferred volume in terms of three parameters: withdrawal speed, post radius, and dipping depth. Numerical simulations were carried out utilizing the volume of fluid (VOF) model combined with the dynamic mesh model. The experiments were also conducted on an optical platform equipped with a high-speed camera. The simulation results coincide well with the experimental results, with the maximum relative difference within 15%. The results show that the transferred volume increases with the increasing withdrawal speed and remains stable when the speed is greater than 1 mm/s, and it shows a linear relationship with the cube of post radius. And the transferred volume will increase with the dipping depth. Based on the experimental and numerically work, it is concluded that the volume of the pre-analyzed phosphor gel can be precisely obtained.
Journal Articles
Journal:
Journal of Electronic Packaging
Article Type: Research-Article
J. Electron. Packag. September 2015, 137(3): 031012.
Paper No: EP-15-1034
Published Online: September 1, 2015
Abstract
Temperature rise could be a crucial issue for some electronic connectors subjected to the relative large electrical current. A nonstatistical multiscale sinusoidal rough surface (MSRS) model is adopted to estimate the contact area between matched metallic terminals as a function of contact load. A fast Fourier transform (FFT) is conducted to characterize the measured surface topology of the terminals. Multiphysics three-dimensional (3D) finite element analysis (FEA) is then carried out to evaluate the temperature rise of mated micro-universal serial bus (USB) connectors. Temperature distributions of the terminal based on the numerical simulations are in good agreement with those based on the measurements using a thermal couple and an infrared thermal camera as well.
Journal Articles
Journal:
Journal of Electronic Packaging
Article Type: Editorial
J. Electron. Packag. December 2014, 136(4): 040201.
Paper No: EP-14-1070
Published Online: September 19, 2014
Journal Articles
Journal:
Journal of Electronic Packaging
Article Type: Research-Article
J. Electron. Packag. September 2014, 136(3): 031012.
Paper No: EP-13-1137
Published Online: June 5, 2014
Abstract
This paper reports theoretical and numerical analysis of fluid flow and heat transfer in a cascade electro-osmotic flow (EOF) micropump for chip cooling. A simple analytical model is developed to determine the temperature distribution in a two-dimensional (2D) single channel EOF micropump with forced convection due to a voltage difference between both ends. Numerical simulations are performed to determine the temperature distribution in the domain which is compared with that predicted by the model. A novel cascade EOF micropump with multiple microchannels in series and parallel and with an array of interdigitated electrodes along the flow direction is proposed. The simulations predict the maximum flow rate and pressure capability of one single stage of the micropump and the analytical model employs equivalent circuit theory to predict the total flow rate and back pressure. Each stage of the proposed micropump comprises sump and pump regions having opposing electric field directions. The various design parameters of the micropump includes the height of the pump and sump (h), number of stages (n), channel width (w), thickness of the channel wall or fin (r), and width ratio of the pump and sump (s:p) regions. Numerical simulations are performed to predict the effects of these design parameters on the pump performance which is compared with that predicted by the analytical model. The micropump is used for cooling cooling of an Intel® CoreTM i5 chip which produces a maximum heat of 95 W over an area of 3.75 × 3.75 cm. Based on the parametric studies a design for the cascade EOF micropump is proposed which provides a maximum flow rate of 14.16 ml/min and a maximum back pressure of 572.5 Pa to maintain a maximum chip temperature of 310.63 K.
Journal Articles
Journal:
Journal of Electronic Packaging
Article Type: Research-Article
J. Electron. Packag. March 2014, 136(1): 011008.
Paper No: EP-13-1025
Published Online: January 24, 2014
Abstract
This paper investigates the thermal and fluid dynamic characteristics due to multiple miniature axial fans with blade chord and span length scales less than 10 mm, impinging air onto finned surfaces. A coupled approach, utilizing both experimental and numerical techniques, has been devised to examine in detail the exit air flow interaction between cooling fans within an array. The findings demonstrate that fans positioned adjacently in an array can influence heat transfer performance both positively and negatively by up to 35% compared to an equivalent single fan—heat sink unit operating standalone. Numerical simulations have provided an insight into the flow fields generated by adjacent fans and also the air flow interaction with fixed fan motor support structures downstream. A novel experimental approach utilizing infrared thermography has been developed to locally assess the validity of the numerical models. In particular, an assessment on implementing compact lumped parameter fans and fans modeled with full geometric detail is shown for two configurations that are impinging air onto finned and flat surfaces. Overall, the study provides an insight into fan cooled heat sinks incorporating multiple miniature axial fans and general recommendations for improving current numerical modeling approaches.
Journal Articles
Journal:
Journal of Electronic Packaging
Article Type: Research-Article
J. Electron. Packag. December 2013, 135(4): 041007.
Paper No: EP-13-1018
Published Online: November 5, 2013
Abstract
A design of experiment (DOE) methodology based on numerical simulation is presented to improve thermal fatigue reliability of multirow quad flat nonlead (QFN) packages. In this method, the influences of material properties, structural geometries, and temperature cycling profiles on thermal fatigue reliability are evaluated, a L27(38) orthogonal array is built based on Taguchi method to figure out optimized factor combination design for promoting thermal fatigue reliability. Analysis of variance (ANOVA) is carried out to examine the influence of factors on the thermal fatigue reliability and to find the significant factors. Anand constitutive model is adopted to describe the viscoplastic behavior of lead-free solder Sn3.0Ag0.5Cu. The stress and strain in solder joints under temperature cycling are studied by 3D finite element (FE) model. The modified Coffin–Manson model is employed to predict the fatigue life of solder joints. Results indicate that the coefficients of thermal expansion (CTE) of printed circuit board (PCB), the height of solder joint, and CTE of epoxy molding compound (EMC) have critical influence on thermal fatigue life of solder joints. The fatigue life of multirow QFN package with original design is 767 cycles, which can be substantially improved by 5.43 times to 4165 cycles after the optimized factor combination design based on the presented method.
Journal Articles
Inviscid and Viscous Numerical Models Compared to Experimental Data in a Small Data Center Test Cell
Journal:
Journal of Electronic Packaging
Article Type: Research-Article
J. Electron. Packag. September 2013, 135(3): 030904.
Paper No: EP-12-1092
Published Online: July 24, 2013
Abstract
Both localized power densities and overall power consumption within the data center continue to rise, following the same upward trend as the information technology (IT) equipment stored within the data center. Air cooling this increasing power has proved a significant challenge at both the IT equipment and data center level. In order to combat this challenge, computational fluid dynamics and heat transfer (CFD/HT) models have been employed as the dominant technique for the design and optimization of both new and existing data centers. This study is a continuation of earlier comparisons of CFD/HT models to experimentally measured temperature and flow fields in a small data center test cell. It compares an inviscid model, a laminar flow model, and three turbulence models to six sets of experimentally collected data. The six sets of data are from two different IT equipment rack power dissipations using three different layouts of perforated tiles. Insight into the location of the deviation between the different CFD/HT models and experimental data are discussed, along with the computational effort involved in running the models. A new grid analysis was performed on the different CFD/HT models in order to try to minimize computational effort. The inviscid model was able to run with a smaller grid size than the viscous models and even for the same size grid was found to run 30% faster than the fastest viscous model. Due to both the reduced grid size and computational effort (due to the simpler equation set), the inviscid model ran over thirty times faster than the next fastest model. The fact that the inviscid model ran the fastest is not surprising, however what was not expected is that the inviscid model was also found to have the smallest deviations from the experimental data for all six of the cases. This is most likely due to the arrangement of the data center test cell with the relatively few high velocity air jets and large open space around the IT equipment. More tightly packed data centers with higher air velocities and turbulent mixing conditions will certainly produce different results than those found in this study.
Journal Articles
Journal:
Journal of Electronic Packaging
Article Type: Research-Article
J. Electron. Packag. March 2013, 135(1): 011004.
Paper No: EP-12-1005
Published Online: February 26, 2013
Abstract
There has been an evident increase in the demand for accurate and complex patterns for particles used in microsized electronic devices. Direct printing technology has been promoted as a solution for these needs, as the development of this technology provides both economical and environmental benefits, as well as being a time and energy saving process. Research in the field of printing technologies is still in the initial stages, involving the study of physical and chemical properties of printing materials. There are several methods currently using direct printing methods: microdispensing deposition write (MDDW), maskless mesoscale materials deposition (M3D), and inkjet printing. This study explores the direct printing methods of sequential and randomized printing associated with MDDW, M3D, and inkjet printing using computer simulations compared with actual experimentations. Sequential printing involves depositing particles onto the substrate in a specific order based on particle size. This method is associated with MDDW, where a relatively high viscous ink is dispensed onto the substrate so that particle sizes maintain an order in relation to one another, effectively producing a higher packing factor. Randomized printing involves the dispensing of various sizes of particles onto the substrate in a random order, as in inkjet printing. With this process, the probability of obtaining an efficient packing factor is unlikely and decreases even more with particle size. Therefore, the monolayer method, involving the deposition of individual particles, was developed to increase the packing factor when using the inkjet process. The results presented in this study proved that monolayering methods coincide with the projections predicted by the computer simulation. Sequential packing (MDDW) provides a shorter and higher range of packing factors than that of random packing sequences (ink jet); thus showing sequential packing to be the more efficient method. Sequential packing is closely related to the printing of high viscosity ink because of the higher packing factor that this method provides. An ink with increased viscosity allows for better conductivity which is essential in the development of improved nanoprinting technologies. This study provides evidence for the most efficient means of increasing the packing factor of particles; these methods offer the opportunity for technological advancement and commercialization of nanoprinting materials.
Journal Articles
Journal:
Journal of Electronic Packaging
Article Type: Research Papers
J. Electron. Packag. March 2012, 134(1): 011006.
Published Online: March 19, 2012
Abstract
This paper studies the flow and temperature patterns in an overhead diffuser based data center. In-situ measurements of the data center were carried out to validate a mathematic model for predicting the effect of different air distribution systems. With the measured data of temperatures and airflow velocities, the mathematic model is constructed using a commercial Computational Fluid Dynamics (CFD) software and experimental data to present a comparison between test results and numerical simulations. The area of the data center is 311 square meters and the heat load of the equipment is 320~360 watt per square meter. In-situ temperatures and humidity of the data center were measured with an Automatic Temperature and Humidity measuring instrument, whose error is ±0.5 °C. The discrepancy of the temperature and velocity between the numerical and experimental results were within ±2.3 °C and ±1.8 m/s, respectively. In addition, analysis shows that changing the volume flow rate of the cold air delivered to some diffusers can optimize the temperature field and thereby save the energy.
Journal Articles
Conjugate Thermal Analysis of Air-Cooled Discrete Flush-Mounted Heat Sources in a Horizontal Channel
Journal:
Journal of Electronic Packaging
Article Type: Research Papers
J. Electron. Packag. December 2011, 133(4): 041001.
Published Online: November 17, 2011
Abstract
Thermal analysis with comprehensive treatment of conjugate heat transfer is performed in this study for discrete flush-mounted heat sources in a horizontal channel cooled by air. The numerical model accounts for mixed convection, radiative exchange and two-dimensional conduction in the substrate. The model is first used to simulate available experimental work to demonstrate its accuracy and practical utility. A parametric study is then undertaken to assess the effects of Reynolds number, surface emissivity of walls and heat sources, as well as thickness and thermal conductivity of substrate, on flow field and heat transfer characteristics. It is shown that due to radiative heat transfer, the wall temperatures are brought closer, and the trend of temperature variation along the top wall is significantly altered. Such effects are more pronounced for higher surface emissivity and/or lower Reynolds numbers. The influence of substrate conductivity and thickness is related in that a large value of either substrate conductivity or thickness facilitates redistribution of heat and tends to yield a uniform temperature field in the substrate. For highly conductive or thick substrate, the “hot spot” cools down and may occur in upstream sources. Radiation loss to the ambient increases with substrate conductivity and thickness due to the elevated temperature near the openings, yet the total heat transfer over the bottom surface by convection and radiation remains essentially unaltered.
Journal Articles
Journal:
Journal of Electronic Packaging
Article Type: Research Papers
J. Electron. Packag. March 2011, 133(1): 011007.
Published Online: March 9, 2011
Abstract
Due to the increase in computer rack equipment power in recent years, thermal management of data centers has become a challenging problem. Data center facilities with raised floor plenums are the most popular configuration from a thermal management perspective. Considerable ongoing research efforts focus on optimizing the room layouts and equipment design in order to achieve the desired cooling. However, the detrimental impact of underfloor blockages, which occur widely, is seldom addressed. These blockages often take the form of chiller pipes, cabling, and wires. They impede the flow of cold air from the air conditioning units and yield unpredictable and undesirable air flow patterns. In this paper the effect of such underfloor blockages on data center performance is characterized in detail. A representative data center is modeled using a commercial computational fluid dynamics code with typical underfloor blockages. Blockages are shown to have a significant impact on tile flow rates and rack inlet temperatures. Based on the detailed numerical study broad guidelines are presented on managing the underfloor blockages for improved data center performance. Established guidelines are experimentally validated on a different data center cell. A detailed comparison between the experimental and numerical results is presented. Based on the numerical and experimental study it is concluded that blockages if placed in “critical” path can potentially have a detrimental impact on data center performance. Case studies are presented where blockages in “safe” path will have a minimum effect on data center performance.
Journal Articles
Journal:
Journal of Electronic Packaging
Article Type: Research Papers
J. Electron. Packag. June 2010, 132(2): 021002.
Published Online: May 20, 2010
Abstract
This paper is centered on quantifying the effect of computer room and computer room air conditioning (CRAC) unit modeling on the perforated tile flow distribution in a representative raised-floor data center. Also, this study quantifies the effect of plenum pipes and perforated tile porosity on the operating points of the CRAC blowers, total CRAC air flow rate, and its distribution. It is concluded that modeling the computer room, the CRAC units, and/or the plenum pipes could make an average change of up to 17% in the tile flow rates with a maximum of up to 135% for the facility with 56% open tiles while the average and maximum changes for the facility with 25% open tiles are 6% and 60%, respectively.
Journal Articles
Journal:
Journal of Electronic Packaging
Article Type: Technical Briefs
J. Electron. Packag. March 2010, 132(1): 014502.
Published Online: March 4, 2010
Abstract
A three-dimensional numerical model is developed to simulate the mold filling behavior in the plastic encapsulation of microchips. The conventional Hele–Shaw approximation is inadequate to analyze a complex molding compound flow behavior with multiple microchips in a single cavity. The developed numerical algorithm is based on the finite difference method combined with the robustness of volume of fluid volume-tracking method to solve the two-phase flow field in complex mold and die geometries. Twelve dies are arranged in a matrix-array in a single mold cavity. Short-shot experimental data are used to validate the numerical results for the melt flow front at different flow times. Close agreement between the experimental data and the numerical results demonstrates the applicability of the present computational model for the simulation of practical epoxy molding compound encapsulation.