Abstract

When a linear viscoelastic (LVE) analysis is to be implemented, the time-dependent shear and bulk moduli, G(t) and K(t), are required. In practice, however, only the time-dependent behavior under uniaxial loading, E(t), is often available for the analysis simply because it can be measured routinely using commercial tools such as a dynamic mechanical analyzer (DMA) or a universal tensile testing machine. When only E(t) is available for an LVE analysis, some assumption has to be made to satisfy the input requirements of an LVE analysis. The most widely used assumption is “time-independent” Poisson's ratio, which implies that the approximated relaxation behavior under shear and hydrostatic loadings would be proportional to the relaxation behavior under uniaxial loading. The effect of the assumption on warpage prediction is investigated. First, the experimentally measured Young's and bulk modulus master curves, E(t) and K(t), are presented, from which all viscoelastic properties are determined. The approximated G(t) and K(t) master curves are then calculated from the experimentally measured E(t) and the assumed constant Poisson's ratios. Both sets of properties are used in two critical applications to examine the effect of the assumption on warpage prediction quantitatively: (1) fan-out wafer-level package (FO-WLP) and (2) stacked-die package. Some modeling guidelines are also provided when the assumption must be used.

References

1.
Brinson
,
H. F.
, and
Brinson
,
L. C.
,
2008
,
Polymer Engineering Science and Viscoelasticity: An Introduction
, Springer, Germany, pp.
99
157
.
2.
TA DMA850 Brochure, 2022, TA Instruments, New Castle, DE, accessed May 12, 2022, https://www.tainstruments.com/wp-content/uploads/BROCH-DMA850-2018-EN.pdf
3.
Lin
,
W.
, and
Lee
,
M. W.
,
2008
, “
PoP/CSP Warpage Evaluation and Viscoelastic Modeling
,”
58th Electronic Components and Technology Conference
, Lake Buena Vista, FL, May 27--30, pp.
1576
1581
.10.1109/ECTC.2008.4550186
4.
Amagai
,
M.
, and
Suzuki
,
Y.
,
2010
, “
A Study of Package Warpage for Package on Package (PoP)
,” Proceedings of the 60th Electronic Components and Technology Conference (
ECTC
), Las Vegas, NV, June 1--4, pp.
226
233
.10.1109/ECTC.2010.5490967
5.
Lin
,
P.-Y.
, and
Lee
,
S.
,
2020
, “
Warpage Modeling of Ultra-Thin Packages Based on Chemical Shrinkage and Cure-Dependent Viscoelasticity of Molded Underfill
,”
IEEE Trans. Device Mater. Reliab.
,
20
(
1
), pp.
67
73
.10.1109/TDMR.2019.2956646
6.
Cheng
,
H.-C.
,
Wu
,
Z.-D.
, and
Liu
,
Y.-C.
,
2020
, “
Viscoelastic Warpage Modeling of Fan-Out Wafer-Level Packaging During Wafer-Level Mold Cure Process
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
10
(
7
), pp.
1240
1250
.10.1109/TCPMT.2020.2992041
7.
Baek
,
J.-H.
,
Park
,
D.-W.
,
Oh
,
G.-H.
,
Kawk
,
D.-O.
,
Park
,
S. S.
, and
Kim
,
H.-S.
,
2022
, “
Effect of Cure Shrinkage of Epoxy Molding Compound on Warpage Behavior of Semiconductor Package
,”
Mater. Sci. Semicond. Process.
,
148
, p.
106758
.10.1016/j.mssp.2022.106758
8.
Xia
,
D.
,
Wang
,
B.
,
Liao
,
C.
,
Liu
,
Z.
,
He
,
H.
, and
Liu
,
L.
,
2021
, “
Warpage Behavior Study and Optimization for Ultra-Thin POP Memory With Multi-Stacked Chips
,”
22nd International Conference on Electronic Packaging Technology
(
ICEPT
), IEEE, Xiamen, China, Sept. 14--17, pp.
1
5
.10.1109/ICEPT52650.2021.9567929
9.
Selvanayagam
,
C.
,
Mandal
,
R.
, and
Raghavan
,
N.
,
2018
, “
Comparison of Experimental, Analytical and Simulation Methods to Estimate Substrate Material Properties for Warpage Reliability Analysis
,”
Microelectron. Reliab.
,
88–90
, pp.
817
823
.10.1016/j.microrel.2018.07.110
10.
Tan
,
L.
,
Li
,
J.
,
Cheng
,
X.
,
Wang
,
Q.
,
Cai
,
J.
,
Shen
,
H.
,
Yu
,
G.
,
Zhang
,
T.
, and
Wang
,
S.
,
2013
, “
Study of Viscoelastic Effect of EMC on FBGA Block Warpage by FEA Simulation
,”
14th International Conference on Electronic Packaging Technology
, Dalian, China, Aug. 11--14, pp.
343
346
.10.1109/ICEPT.2013.6756485
11.
Park
,
S.
,
Liu
,
D.
,
Kim
,
Y.
,
Lee
,
H.
, and
Zhang
,
S.
,
2012
, “
Stress Evolution in an Encapsulated MEMS Package Due to Viscoelasticity of Packaging Materials
,”
62nd Electronic Components and Technology Conference
, San Diego, CA, May 29--1 June, pp.
70
75
.10.1109/ECTC.2012.6248808
12.
Amagai
,
M.
, and
Suzuki
,
Y.
,
2012
, “
Warpage Modeling for 3D Packages
,” IEEE 14th Electronics Packaging Technology Conference (
EPTC
), Singapore, December 5--7, pp.
479
489
.10.1109/EPTC.2012.6507131
13.
Miyake
,
K.
,
Yoshida
,
T.
,
Baik
,
H. G.
, and
Park
,
S. W.
,
2001
, “
Viscoelastic Warpage Analysis of Surface Mount Package
,”
ASME J. Electron. Packag.
,
123
(
2
), pp.
101
104
.10.1115/1.1339820
14.
Phansalkar
,
S. P.
,
Kim
,
C.
, and
Han
,
B.
,
2022
, “
Effect of Critical Properties of Epoxy Molding Compound on Warpage Prediction: A Critical Review
,”
Microelectron. Reliab.
,
130
, p.
114480
.10.1016/j.microrel.2022.114480
15.
Coleman
,
B. D.
, and
Noll
,
W.
,
1961
, “
Foundations of Linear Viscoelasticity
,”
Rev. Mod. Phys.
,
33
(
2
), pp.
239
249
.10.1103/RevModPhys.33.239
16.
Graessley
,
W. W.
,
1971
, “
Linear Viscoelasticity in Entangling Polymer Systems
,”
J. Chem. Phys.
,
54
(
12
), pp.
5143
5157
.10.1063/1.1674809
17.
Dealy
,
J. M.
,
Wissbrun
,
K. F.
,
Dealy
,
J. M.
, and
Wissbrun
,
K. F.
,
1999
, “
Linear Viscoelasticity
,”
Melt Rheology and Its Role in Plastics Processing: Theory and Applications
, Springer, Germany, pp.
42
102
.
18.
Tschoegl
,
N. W.
,
Knauss
,
W. G.
, and
Emri
,
I.
,
2002
, “
Poisson's Ratio in Linear Viscoelasticity—A Critical Review
,”
Mech. Time-Depend. Mater.
,
6
(
1
), pp.
3
51
.10.1023/A:1014411503170
19.
Phansalkar
,
S. P.
,
Han
,
B.
, and
Lee
,
G.
,
2024
, “
Transitioning From Warpage ‘Control’ to Warpage ‘Design’: A Paradigm Shift
,” 74th Electronic Components and Technology Conference (
ECTC
), Denver, CO, May 28–31, pp.
1187
1192
.10.1109/ECTC51529.2024.00191
20.
Phansalkar
,
S. P.
,
Mittakolu
,
R.
,
Han
,
B.
, and
Kim
,
T.
,
2025
, “
Enhanced DMA Test Procedure to Measure Viscoelastic Properties of Epoxy-Based Molding Compound: Multiple Oscillatory Strain Amplitudes and Monotonic Loading
,”
Micromachines
,
16
(
4
), p.
384
.10.3390/mi16040384
21.
Phansalkar
,
S. P.
, and
Han
,
B.
,
2025
, “
Measurement of Temperature-Dependent Viscoelastic Compressibility of Highly-Filled Thermosets Using Inert Gas Pressure
,”
J. Mech. Phys. Solids
,
199
, p.
106087
.10.1016/j.jmps.2025.106087
22.
Lau
,
J. H.
,
Li
,
M.
,
Tian
,
D.
,
Fan
,
N.
,
Kuah
,
E.
,
Kai
,
W.
,
Li
,
M.
, et al.,
2017
, “
Warpage and Thermal Characterization of Fan-Out Wafer-Level Packaging
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
7
(
10
), pp.
1729
1738
.10.1109/TCPMT.2017.2715185
23.
Kim
,
C.
,
Phansalkar
,
S. P.
,
Lee
,
H. S.
, and
Han
,
B.
,
2022
, “
Measurement of Effective Cure Shrinkage of Epoxy‐Based Molding Compound by Fiber Bragg Grating Sensor Using Two‐Stage Curing Process
,”
J. Appl. Polym. Sci.
,
139
(
6
), p.
51620
.10.1002/app.51620
You do not currently have access to this content.