Abstract

Underfill encapsulation is crucial in assembling flip-chip products, such as ball grid array packages, enhancing the reliability and performance of electronic packages by filling voids between integrated circuit chips and substrates. Despite advancements, challenges remain in understanding underfill flow dynamics in multichip heterogeneous systems. This study explores capillary underfill encapsulation in quad-chip configurations, integrating experimental observations with computational fluid dynamics (CFD) simulations to analyze underfill flow dynamics and their impact on package reliability. The CFD model shows high accuracy, with validation errors as low as 5.31% at a normalized time (tnz) of 0.02, 6.83% at 0.1, and 6.05% at 0.2. Among dispensing patterns, the Double-I pattern is most effective, minimizing void formation with percentages as low as 0.02%, compared to up to 1.96% and 2.39% for L and U patterns, respectively. The study also identifies an optimal dispensing length of 50% of the total chip length, reducing void percentages to 0.04%, compared to 9.32% and 12.84% at 100% and 30% lengths, respectively. These findings are pivotal for optimizing underfill processes, enhancing electronic package reliability and performance. The insights gained are crucial for advancing the design and manufacturing of state-of-the-art electronic devices, particularly in complex, heterogeneous integrations. This work provides a robust framework for improving the efficiency and reliability of electronic packaging solutions, paving the way for more durable and high-performance electronic devices.

References

1.
Zhang
,
S.
,
Li
,
Z.
,
Zhou
,
H.
,
Li
,
R.
,
Wang
,
S.
,
Paik
,
K.-W.
, and
He
,
P.
,
2022
, “
Challenges and Recent Prospectives of 3D Heterogeneous Integration
,”
E-Prime - Adv. Electr. Eng. Electron. Energy
,
2
, p.
100052
.10.1016/j.prime.2022.100052
2.
Miessner
,
R.
, and
Haeussermann
,
T.
,
2005
, “
Use of Flow Simulation for Design and Process Optimisation for Flip Chip Underfill
,”
Polytronic 2005 5th International Conference on Polymers and Adhesives Microelectronics and Photonics - Proceedings
, Warsaw, Poland, Oct. 23–26, Vol.
2005
, pp.
171
175
.10.1109/POLYTR.2005.1596511
3.
Hashimoto
,
T.
,
Shin-Ichiro
,
T.
,
Morinishi
,
K.
, and
Satofuka
,
N.
,
2008
, “
Numerical Simulation of Conventional Capillary Flow and No-Flow Underfill in Flip-Chip Packaging
,”
Comput. Fluids
,
37
(
5
), pp.
520
523
.10.1016/j.compfluid.2007.07.007
4.
Shih
,
M. F.
, and
Young
,
W. B.
,
2009
, “
Experimental Study of Filling Behaviors in the Underfill Encapsulation of a Flip-Chip
,”
Microelectron. Reliab.
,
49
(
12
), pp.
1555
1562
.10.1016/j.microrel.2009.07.056
5.
Khor
,
C. Y.
,
Abdul Mujeebu
,
M.
,
Abdullah
,
M. Z.
, and
Che
Ani
,
F.
,
2010
, “
Finite Volume Based CFD Simulation of Pressurized Flip-Chip Underfill Encapsulation Process
,”
Microelectron. Reliab.
,
50
(
1
), pp.
98
105
.10.1016/j.microrel.2009.08.007
6.
Wang
,
H.
,
Zhou
,
H.
,
Zhang
,
Y.
,
Li
,
D.
, and
Xu
,
K.
,
2011
, “
Three-Dimensional Simulation of Underfill Process in Flip-Chip Encapsulation
,”
Comput. Fluids
,
44
(
1
), pp.
187
201
.10.1016/j.compfluid.2010.12.030
7.
Khor
,
C. Y.
,
Abdullah
,
M. Z.
, and
Ani
,
F. C.
,
2012
, “
Underfill Process for Two Parallel Plates and Flip Chip Packaging
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1205
1212
.10.1016/j.icheatmasstransfer.2012.07.006
8.
Abas
,
A.
,
Ishak
,
M. H. H.
,
Abdullah
,
M. Z.
,
Che
,
Ani
,
F.
, and
Khor
,
S. F.
,
2016
, “
Lattice Boltzmann Method Study of BGA Bump Arrangements on Void Formation
,”
Microelectron. Reliab.
,
56
, pp.
170
181
.10.1016/j.microrel.2015.10.014
9.
Stencel
,
L. C.
,
Strogies
,
J.
,
Knofe
,
R.
,
Muller
,
B.
,
Borwieck
,
C.
, and
Heimann
,
M.
,
2023
, “
Two-Phase Flow Simulation of Capillary Underfilling as a Design Tool for Heterogenous Integration
,”
24th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2023
, Graz, Austria, Apr. 16–19, pp.
1
9
.10.1109/EuroSimE56861.2023.10100773
10.
Chen
,
D. L.
,
Chang
,
H. J.
,
Chen
,
T. Y.
,
Hu
,
Y. H.
,
Chen
,
T. B.
,
Pan
,
C. H.
,
Yang
,
Y. S.
, and
Hwang
,
S. J.
,
2023
, “
A Study of Underfill Dispensing Patterns in Flip-Chip Packaging
,” 2023 International Conference on Electronics Packaging (
ICEP
), Kumamoto, Japan, Apr. 19–22, pp.
115
116
.10.23919/ICEP58572.2023.10129757
11.
Hung
,
H. H.
,
Cheng
,
Y. C.
,
Hwang
,
S. J.
,
Chang
,
H. J.
,
Huang
,
B. Y.
,
Huang
,
H. H.
,
Chen
,
D. L.
,
Wang
,
C. C.
, and
Hung
,
C. P.
,
2024
, “
Effect of Flip-Chip Ball Grid Array Structure on Capillary Underfill Flow
,”
Results Eng.
,
23
, p.
102527
.10.1016/j.rineng.2024.102527
12.
Deshpande
,
S. S.
,
Anumolu
,
L.
, and
Trujillo
,
M. F.
,
2012
, “
Evaluating the Performance of the Two-Phase Flow Solver interFoam
,”
Comput. Sci. Discovery
,
5
(
1
), p.
014016
.10.1088/1749-4699/5/1/014016
13.
Du
,
Z.
, and
Li
,
J.
,
2024
, “
VOF Method in Two-Stage Fourth Order Time-Stepping Framework
,”
J. Comput. Phys.
,
496
, p.
112580
.10.1016/j.jcp.2023.112580
14.
Jaafar
,
M. A.
,
Rousse
,
D. R.
,
Gibout
,
S.
, and
Bédécarrats
,
J. P.
,
2017
, “
A Review of Dendritic Growth During Solidification: Mathematical Modeling and Numerical Simulations
,”
Renewable Sustainable Energy Rev.
,
74
, pp.
1064
1079
.10.1016/j.rser.2017.02.050
15.
Glitz
,
K. L. Z.
,
Da Silva
,
A. F. C.
,
Donatti
,
C. N.
, and
Maliska
,
C. R.
,
2010
, “
Parallel Computing Simulation of Multiphase Flows Employing VOF Method
,”
13th Brazilian Congress of Thermal Sciences and Engineering
, Uberlandia, MG, Brazil, Dec. 5–10.10.13140/2.1.3873.5047
16.
Young
,
W. B.
,
2011
, “
Non-Newtonian Flow Formulation of the Underfill Process in Flip-Chip Packaging
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
1
(
12
), pp.
2033
2037
.10.1109/TCPMT.2011.2169260
17.
Yao
,
X. J.
,
Wang
,
Z.
,
Zhang
,
W.
, and
Zhou
,
X.
,
2014
, “
A New Model for Permeability of Porous Medium in the Case of Flip-Chip Packaging
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
4
(
8
), pp.
1265
1275
.10.1109/TCPMT.2014.2316537
18.
Ng
,
F. C.
,
Abas
,
A.
, and
Abdullah
,
M. Z.
,
2019
, “
Regional Segregation With Spatial Considerations-Based Analytical Filling Time Model for Non-Newtonian Power-Law Underfill Fluid in Flip-Chip Encapsulation
,”
ASME J. Electron. Packag.
,
141
(
4
), p.
041009
.10.1115/1.4044817
19.
Wan, J. W., Zhang, W. J., and Bergstrom, D. J.,
2005
, “An Analytical Model for Predicting the Underfill Flow Characteristics in Flip-Chip Encapsulation,”
IEEE Transactions on Advanced Packaging
, 28(3), pp. 481–487.10.1109/TADVP.2005.848385
20.
Abas
,
A.
,
Haslinda
,
M. S.
,
Ishak
,
M. H. H.
,
Nurfatin
,
A. S.
,
Abdullah
,
M. Z.
, and
Ani
,
F. C.
,
2016
, “
Effect of ILU Dispensing Types for Different Solder Bump Arrangements on CUF Encapsulation Process
,”
Microelectron. Eng.
,
163
, pp.
83
97
.10.1016/j.mee.2016.06.010
21.
Kim
,
Y. B.
,
Kim
,
S.
,
Sung
,
J.
, and
Lee
,
M.
,
2013
, “
Visualization for Racing Effect and Meniscus Merging in Underfill Process
,”
J. Korean Soc. Mar. Eng.
,
37
(
4
), pp.
351
357
.10.5916/jkosme.2013.37.4.351
22.
Wang, K., Wang, Y., and Zhu, W., “Investigation of Characteristics of the Capillary-Driven Underfill Flow,” 2018 19th International Conference on Electronic Packaging Technology (
ICEPT
), Shanghai, China, Aug. 8–11, pp.
1070
1074
.10.1109/ICEPT.2018.8480690
23.
Azman
,
M. A.
,
Abdullah
,
M.
,
Loh
,
W. K.
, and
Ooi
,
C. K.
,
2024
, “
Advancing Packaging Technology: Computational Fluid Dynamics Modeling for Capillary Underfill Encapsulant in Multi-Chip Heterogenous Packages
,”
Soldering Surf. Mount Technol.
,
37
, pp.
1
16.
10.1108/SSMT-05-2024-0022
24.
Sun
,
C. P.
,
Liang
,
Y. E.
,
Hu
,
D. C.
,
Chen
,
E. H.
,
Lee
,
J. C. B.
, and
Vallury
,
S.
,
2023
, “
Optimization of 2.2D Underfill Process by Novel Methodology and Direct Observation of Capillary Underfill Process
,”
Proceedings of Electronic Components and Technology Conference
, Orlando, FL, May 30–June 2, Vol.
2023
, pp.
175
180
.10.1109/ECTC51909.2023.00038
You do not currently have access to this content.