Abstract

With the exponential growth of performance, three-dimensional (3D) advanced packaging becomes a solution that can combine more logic, memory, and special chips in various fields to accelerate computing. Hybrid bonded interconnection is one of the most important technologies in 3D integration, which combines a “hybrid” interface (metal–metal and medium–medium). It can be connected from one silicon wafer to another by a direct metal pad-to-pad connection, increasing contact density and shortening the interconnection distance between components. The hybrid bonding approach involves spontaneous bonding, both the nanoscale and global topographies of the two bonding surfaces are important. Surface planarization is accomplished via chemical mechanical planarization (CMP); thus, forming a bonding surface by CMP is the key to ensuring alignment accuracy, integration yield, and reliability. This paper reviews the development of the CMP process in the hybrid bonding process in detail. A comprehensive overview and comparison of different CMP optimization results in recent years are carried out by analyzing the surface topology and bonding quality of metal and dielectric materials. In the future, there is an urgent need to collaboratively optimize the CMP process to further scale the hybrid bonding pitch to support the 3D advanced packaging toward the goals of ultrafine pitch, high density and low power consumption.

References

1.
Burkacky
,
O.
,
Kim
,
T.
, and
Yeom
,
I.
,
2023
, “
Advanced Chip Packaging: How Manufactures Can Play to Win
,” Mckinsey, New York, accessed Feb. 5, 2024, https://www.mckinsey.com/industries/semiconductors/ourinsights/advanced-chip-packaging-how-manufacturers-can-play-to-win
2.
Lee
,
I.
,
Nam
,
S.
,
Kim
,
S.
,
Shin
,
S.
,
Kim
,
Y.
,
Seo
,
S.-K.
,
Yu
,
H. J.
, and
Kim
,
D.-W.
,
2023
, “
Extremely Large 3.5D Heterogeneous Integration for the Next-Generation Packaging Technology
,” 73rd Electronic Components and Technology Conference (
ECTC
), May 30--June 2, Orlando, FL, pp.
893
898
.10.1109/ECTC51909.2023.00154
3.
Agarwal
,
R.
,
Cheng
,
P.
,
Shah
,
P.
,
Wilkerson
,
B.
,
Swaminathan
,
R.
,
Wuu
,
J.
, and
Mandalapu
,
C.
,
2022
, “
3D Packaging for Heterogeneous Integration
,” 72nd Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 31--June 3, pp.
1103
1107
.10.1109/ECTC51906.2022.00178
4.
Lu
,
M.-C.
,
2024
, “
Hybrid Bonding for Ultra-High-Density Interconnect
,”
ASME J. Electron. Packag.
,
146
(
3
), p.
030802
.10.1115/1.4064750
5.
Gao
,
G.
, and
Mirkarimi
,
L.
,
2024
, “
Hybrid Bonding Process Technology
,”
Direct Copper Interconnection for Advanced Semiconductor Technology
,
CRC Press
, Boca Raton, FL, pp.
54
115
.
6.
Zhang
,
L.
,
Liu
,
Z.-Q.
,
Chen
,
S.-W.
,
Wang
,
Y.-D.
,
Long
,
W.-M.
,
Guo
,
Y.-H.
,
Wang
,
S.-Q.
,
Ye
,
G.
, and
Liu
,
W.-Y.
,
2018
, “
Materials, Processing and Reliability of Low Temperature Bonding in 3D Chip Stacking
,”
J. Alloys Compd.
,
750
, pp.
980
995
.10.1016/j.jallcom.2018.04.040
7.
Cheemalamarri
,
H. K.
,
Sundaram
,
A.
,
Sandra
,
S.
,
Anh
,
T. V. N.
,
Rao
,
B. C.
,
Guan
,
C. G.
,
Haitao
,
Y.
,
Raju
,
M.
,
Ping
,
L.
, and
Chaeeun
,
L.
,
2024
, “
Sub-0.5 μm Pitch Scaling of W2W Cu/Dielectric Hybrid Bonding
,” 74th Electronic Components and Technology Conference (
ECTC
), Denver, CO, May 28--31, pp.
803
808
.10.1109/ECTC51529.2024.00390
8.
Talukdar
,
T.
,
Elsherbini
,
A.
,
Rawlings
,
B.
,
Vreeland
,
R.
,
Brezinski
,
W.
,
Dong
,
S.
,
Niazi
,
H. K.
,
Liu
,
P.
,
Shi
,
Y.
, and
Tabassum
,
N.
,
2024
, “
Process Development and Performance Benefits of 0.64–0.36 μm Pitch Hybrid Bonding on Intel Process
,” Proceedings of the 2024 IEEE 74th Electronic Components and Technology Conference (
ECTC
), Denver, CO, May 28--31, pp.
784
789
.10.1109/ECTC51529.2024.00128
9.
Goto
,
M.
,
Honda
,
Y.
,
Nanba
,
M.
,
Iguchi
,
Y.
,
Saraya
,
T.
,
Kobayashi
,
M.
,
Higurashi
,
E.
,
Toshiyoshi
,
H.
, and
Hiramoto
,
T.
,
2023
, “
Pixel-Parallel Three-Layer Stacked CMOS Image Sensors Using Double-Sided Hybrid Bonding of SOI Wafers
,”
IEEE Trans. Electron Devices
,
70
(
9
), pp.
4705
4711
.10.1109/TED.2023.3298308
10.
Wang
,
L.
,
Fountain
,
G.
,
Lee
,
B.
,
Gao
,
G.
,
Uzoh
,
C.
,
McGrath
,
S.
,
Enquist
,
P.
,
Arkalgud
,
S.
, and
Mirkarimi
,
L.
,
2017
, “
Direct Bond Interconnect (DBI®) for Fine-Pitch Bonding in 3D and 2.5D Integrated Circuits
,”
Proceedings of the 2017 Pan Pacific Microelectronics Symposium (Pan Pacific)
, Kauai, HI, Feb 6--9, pp.
1
6
.https://ieeexplore.ieee.org/document/7859568
11.
Yang
,
S.
,
2018
, “
Unleashing 3D NAND's Potential With an Innovative Architecture
,”
Keynote Speech, Flash Memory Summit
, Santa Clara, CA.
12.
Chew
,
S. A.
,
De Vos
,
J.
, and
Beyne
,
E.
,
2024
, “
Wafer-to-Wafer Hybrid Bonding at 400-nm Interconnect Pitch
,”
Nat. Rev. Electr. Eng.
,
1
(
2
), pp.
71
72
.10.1038/s44287-024-00019-8
13.
Yu
,
R.
,
Liu
,
F.
,
Polastre
,
R.
,
Chen
,
K.-N.
,
Liu
,
X.
,
Shi
,
L.
,
Perfecto
,
E.
,
Klymko
,
N.
,
Chace
,
M.
, and
Shaw
,
T.
,
2009
, “
Reliability of a 300-mm-Compatible 3DI Technology Based on Hybrid Cu-Adhesive Wafer Bonding
,”
Symposium on VLSI Technology
, Kyoto, Japan, June 15--17, pp.
170
171
.https://ieeexplore.ieee.org/document/5200676
14.
Chen
,
K.-N.
,
Shaw
,
T.
,
Cabral
,
C.
, and
Zuo
,
G.
,
2010
, “
Reliability and Structural Design of a Wafer-Level 3D Integration Scheme With W TSVs Based on Cu-Oxide Hybrid Wafer Bonding
,”
Proceedings of the 2010 International Electron Devices Meeting
, San Francisco, CA, Dec. 6--8, pp.
2.4.1
2.4.4
.10.1109/IEDM.2010.5703283
15.
Ruan
,
W.
,
Chen
,
L.
,
Li
,
Z.
, and
Ye
,
T.
,
2009
, “
Effects of Pattern Characteristics on Copper CMP
,”
J. Semicond.
,
30
(
4
), p.
046001
.10.1088/1674-4926/30/4/046001
16.
Kim
,
Y.
,
Min Seong
,
Jung
,
S. W. P.
,
Kim
,
J. H.
, and
Park
,
J. K.
,
2023
, “
A Review on the Bonding Characteristics of SiCN for Low-Temperature Cu Hybrid Bonding
,”
J. Microelectron. Packag. Soc.
,
30
(
4
), pp.
8
16
.10.6117/KMEPS.2023.30.4.008
17.
Shie
,
K. C.
,
Hsu
,
P. N.
,
Li
,
Y. J.
,
Tran
,
D. P.
, and
Chen
,
C.
,
2021
, “
Failure Mechanisms of Cu-Cu Bumps Under Thermal Cycling
,”
Materials
,
14
(
19
), p.
5522
.10.3390/ma14195522
18.
Yang
,
S. C.
,
Tran
,
D. P.
, and
Chen
,
C.
,
2023
, “
Recrystallization and Grain Growth in Cu-Cu Joints Under Electromigration at Low Temperatures
,”
Materials
,
16
(
17
), p.
5822
.10.3390/ma16175822
19.
He
,
P. S.
,
Tran
,
D. P.
,
Kuo
,
T. Y.
,
Hsu
,
W. Y.
,
Lin
,
H. E.
,
Shie
,
K. C.
, and
Chen
,
C.
,
2023
, “
High-Bonding-Strength Polyimide Films Achieved Via Thermal Management and Surface Activation
,”
Nanomaterials
,
13
(
9
), p.
1575
.10.3390/nano13091575
20.
Tai
,
Y. L.
,
Tsai
,
M. S.
,
Tung
,
I. C.
,
Dai
,
B. T.
, and
Feng
,
M. S.
,
2000
, “
Study on Chemical-Mechanical Polishing of Low Dielectric Constant Polyimide Thin Films
,” Low and High Dielectric Constant Materials: Materials Science, Processing, and Reliability Issues and Thin Film Materials for Advanced Packaging Technologies,
Proceedings of the Fourth International Symposium
, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.https://www.electrochem.org/dl/pv/published/1999/PV_99-7_TOC.pdf
21.
Lin
,
Y. M.
,
Chang
,
P. C.
,
Lee
,
O. H.
,
Chiu
,
W. L.
,
Chang
,
T. C.
,
Chang
,
H. H.
,
Lee
,
C. H.
,
Huang
,
B.
,
Dong
,
M.
,
Tsai
,
D.
,
Lee
,
C. C.
, and
Chen
,
K. N.
,
2022
, “
A Hybrid Bonding Interconnection With a Novel Low-Temperature Bonding Polymer System
,” 72nd Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 31--June 3, pp.
2128
2134
.10.1109/ECTC51906.2022.00336
22.
Nakayama
,
K.
,
Hayama
,
K.
,
Tanaka
,
F. L.
,
La
,
M. T. N.
, and
Inoue
,
F.
,
2024
, “
Minimizing Recess of Cu Pad on Hybrid Bonding With SiCN Via Non-Selective Chemical Mechanical Polishing and Post-Cleaning Steps
,”
ECS J. Solid State Sci. Technol.
,
13
(
7
), p.
074009
.10.1149/2162-8777/ad5fb7
23.
Ji
,
H.
, and
Chui
,
K.-J.
,
2021
, “
Cu CMP Dishing in High Density Cu Pad for Fine Pitch Wafer-to-Wafer (W2W) Hybrid Bonding
,” 23rd Electronics Packaging Technology Conference (
EPTC
), Singapore, Dec. 7--9, pp.
28
32
.10.1109/EPTC53413.2021.9663921
24.
Wang
,
I.-T.
,
Chui
,
K.
, and
Zhu
,
Y.
,
2019
, “
Process and Design Consideration for Wafer-to-Wafer Hybrid Bonding
,” 21st Electronics Packaging Technology Conference (
EPTC
), Singapore, Dec. 4--6, pp.
725
728
.10.1109/EPTC47984.2019.9026651
25.
Dubey
,
V.
,
Wünsch
,
D.
,
Gottfried
,
K.
,
Wiemer
,
M.
,
Fischer
,
T.
,
Hanisch
,
A.
,
Schermer
,
S.
,
Helke
,
C.
,
Hasse
,
M.
,
Reuter
,
D.
,
Schulz
,
S. E.
,
Ghosal
,
S.
, and
Hofmann
,
L.
,
2023
, “
Process and Design Challenges for Hybrid Bonding
,”
ECS Trans.
,
112
(
3
), pp.
73
81
.10.1149/11203.0073ecst
26.
Mudrick
,
J. P.
,
Sierra-Suarez
,
J. A.
,
Jordan
,
M. B.
,
Friedmann
,
T. A.
,
Jarecki
,
R.
, and
Henry
,
M. D.
,
2019
, “
Sub-10 μm Pitch Hybrid Direct Bond Interconnect Development for Die-to-Die Hybridization
,” 69th Electronic Components and Technology Conference (
ECTC
), Las Vegas, NV, May 28--31, pp.
648
654
.10.1109/ECTC.2019.00103
27.
Beyne
,
E.
,
Kim
,
S.-W.
,
Peng
,
L.
,
Heylen
,
N.
,
De Messemaeker
,
J.
,
Okudur
,
O. O.
,
Phommahaxay
,
A.
,
Kim
,
T.-G.
,
Stucchi
,
M.
, and
Velenis
,
D.
,
2017
, “
Scalable, Sub 2 μm Pitch, Cu/SiCN to Cu/SiCN Hybrid Wafer-to-Wafer Bonding Technology
,” IEEE International Electron Devices Meeting (
IEDM
), San Francisco, CA, Dec. 2--6, pp.
32
34
.10.1109/IEDM.2017.8268486
28.
Khurana
,
G.
, and
Panchenko
,
I.
,
2023
, “
Improvement in Wafer-to-Wafer Hybrid Bonding Using Optimized Chemical Mechanical Planarization Process for Cu Dishing
,” 25th Electronics Packaging Technology Conference (
EPTC
), Singapore, Dec. 5--8, pp.
373
380
.10.1109/EPTC59621.2023.10457774
29.
Lim
,
S. P. S.
,
Chong
,
S. C.
, and
Chidambaram
,
V.
,
2021
, “
Comprehensive Study on Chip to Wafer Hybrid Bonding Process for Fine Pitch High Density Heterogeneous Applications
,” 71st Electronic Components and Technology Conference (
ECTC
), San Diego, CA, June 1--July 4, pp.
438
444
.10.1109/ECTC32696.2021.00080
30.
Elsherbini
,
A.
,
Liff
,
S.
,
Swan
,
J.
,
Jun
,
K.
,
Tiagaraj
,
S.
, and
Pasdast
,
G.
,
2021
, “
Hybrid Bonding Interconnect for Advanced Heterogeneously Integrated Processors
,” 71st Electronic Components and Technology Conference (
ECTC
), San Diego, CA, June 1--July 4, pp.
1014
1019
.10.1109/ECTC32696.2021.00166
31.
Kim
,
S.-W.
,
Fodor
,
F.
,
Heylen
,
N.
,
Iacovo
,
S.
,
De Vos
,
J.
,
Miller
,
A.
,
Beyer
,
G.
, and
Beyne
,
E.
,
2020
, “
Novel Cu/SiCN Surface Topography Control for 1 μm Pitch Hybrid Wafer-to-Wafer Bonding
,” 70th Electronic Components and Technology Conference (
ECTC
), Orlando, FL, June 3--30, pp.
216
222
.10.1109/ECTC32862.2020.00046
32.
Ma
,
K.
,
Bekiaris
,
N.
,
Hsu
,
C.-H.
,
Xue
,
L.
,
Ramaswami
,
S.
,
Ding
,
T.
,
Probst
,
G.
,
Wernicke
,
T.
,
Uhrmann
,
T.
, and
Wimplinger
,
M.
,
2024
, “
0.5 μm Pitch Wafer-to-Wafer Hybrid Bonding at Low Temperatures With SiCN Bond Layer
,” 74th Electronic Components and Technology Conference (
ECTC
), Denver, CO, May 28--31, pp.
331
336
.10.1109/ECTC51529.2024.00061
33.
Fury
,
M. A.
,
1997
, “
The Early Days of CMP
,”
Solid State Technol.
,
40
(
5
), pp.
81
84
.
34.
Gao
,
P.
,
Liu
,
T.
,
Zhang
,
Z.
,
Meng
,
F.
,
Ye
,
R.-P.
, and
Liu
,
J.
,
2021
, “
Non-Spherical Abrasives With Ordered Mesoporous Structures for Chemical Mechanical Polishing
,”
Sci. China Mater.
,
64
(
11
), pp.
2747
2763
.10.1007/s40843-021-1680-2
35.
Zhang
,
Y.
,
Niu
,
X.
,
Zhou
,
J.
,
Wang
,
J.
,
Yang
,
C.
,
Hou
,
Z.
,
Zhu
,
Y.
, and
Huang
,
L.
,
2022
, “
Surface Corrosion Inhibition Mechanism of Sarcosine as a Green Novel Inhibitor on a Novel Barrier Layer Material of Cobalt in Copper Film CMP for GLSI
,”
Mater. Sci. Semicond. Process.
,
140
, p.
106402
.10.1016/j.mssp.2021.106402
36.
Sitaraman
,
S.
,
Jiang
,
L.
,
Dag
,
S.
,
Masoomi
,
M.
,
Wang
,
Y.
,
Lianto
,
P.
,
An
,
J.
,
Wang
,
R.
,
See
,
G.
, and
Sundarrajan
,
A.
,
2022
, “
A Holistic Development Framework for Hybrid Bonding
,” 72nd Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 31--June 3, pp.
691
700
.10.1109/ECTC51906.2022.00116
37.
Shukla
,
A.
,
Victoria
,
S. N.
, and
Manivannan
,
R.
,
2021
, “
A Review on Chemical Mechanical Planarization of Barrier Layer Metals
,”
Key Eng. Mater.
,
882
, pp.
171
180
.10.4028/www.scientific.net/KEM.882.171
38.
Gao
,
G.
,
Mirkarimi
,
L.
,
Fountain
,
G.
,
Wang
,
L.
,
Uzoh
,
C.
,
Workman
,
T.
,
Guevara
,
G.
,
Mandalapu
,
C.
,
Lee
,
B.
, and
Katkar
,
R.
,
2018
, “
Scaling Package Interconnects Below 20 μm Pitch With Hybrid Bonding
,” 68th Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 29--June 1, pp.
314
322
.10.1109/ECTC.2018.00055
39.
Basim
,
G. B.
,
Ozdemir
,
Z.
, and
Mutlu
,
O.
,
2012
, “
Biomaterials Applications of Chemical Mechanical Polishing
,”
International Conference on Planarization/CMP Technology (ICPT)
, Grenoble, France, Oct. 15--17, pp.
1
5
.https://ieeexplore.ieee.org/abstract/document/6353813
40.
Basim
,
G. B.
,
Sur
,
D.
, and
Langhout
,
J.
,
2021
, “
Barrier and Packaging Level CMP Optimization
,”
Electrochemical Society Meeting Abstracts 239
,
The Electrochemical Society
, Philadelphia, PA, p.
808
.10.1149/MA2021-0120808mtgabs
41.
Gao
,
G.
,
Mirkarimi
,
L.
,
Fountain
,
G.
,
Suwito
,
D.
,
Theil
,
J.
,
Workman
,
T.
,
Uzoh
,
C.
,
Guevara
,
G.
,
Lee
,
B.
, and
Huyhn
,
M.
,
2021
, “
Low Temperature Hybrid Bonding for Die to Wafer Stacking Applications
,” 71st Electronic Components and Technology Conference (
ECTC
), San Diego, CA, June 1--July 4, pp.
383
389
.10.1109/ECTC32696.2021.00071
42.
Arnaud
,
L.
,
Moreau
,
S.
,
Jouve
,
A.
,
Jani
,
I.
,
Lattard
,
D.
,
Fournel
,
F.
,
Euvrard
,
C.
,
Exbrayat
,
Y.
,
Balan
,
V.
,
Bresson
,
N.
,
Lhostis
,
S.
,
Jourdon
,
J.
,
Deloffre
,
E.
,
Guillaumet
,
S.
,
Farcy
,
A.
,
Gousseau
,
S.
, and
Arnoux
,
M.
,
2018
, “
Fine Pitch 3D Interconnections With Hybrid Bonding Technology: From Process Robustness to Reliability
,”
IEEE International Reliability Physics Symposium
(
IRPS
), Burlingame, CA, Mar. 11--15, pp.
4D.4-1
4D.4-7
.10.1109/IRPS.2018.8353591
43.
Gao
,
G.
,
Workman
,
T.
,
Uzoh
,
C.
,
Bang
,
K.
,
Mirkarimi
,
L.
,
Theil
,
J.
,
Suwito
,
D.
,
Katkar
,
R.
,
Fountain
,
G.
, and
Guevara
,
G.
,
2020
, “
Die to Wafer Stacking With Low Temperature Hybrid Bonding
,” 70th Electronic Components and Technology Conference (
ECTC
), Orlando, FL, June 3--30, pp.
589
594
.10.1109/ECTC32862.2020.00098
44.
Chen
,
C.
,
Liu
,
C.-M.
,
Lin
,
H.-W.
,
Huang
,
Y.-S.
,
Chu
,
Y.-C.
,
Lyu
,
D.-R.
,
Chen
,
K.-N.
, and
Tu
,
K.-N.
,
2016
, “
Low-Temperature and Low-Pressure Direct Copper-to-Copper Bonding by Highly (111)-Oriented Nanotwinned Cu
,”
Proceedings of the Pan Pacific Microelectronics Symposium (Pan Pacific)
, Big Island, HI, Jan. 25--28, pp.
1
5
.10.1109/PanPacific.2016.7428434
45.
Chiu
,
W.-L.
,
Lee
,
O.-H.
,
Chiang
,
C.-W.
, and
Chang
,
H.-H.
,
2021
, “
Low Temperature Wafer-to-Wafer Hybrid Bonding by Nanotwinned Copper
,” 71st Electronic Components and Technology Conference (
ECTC
), San Diego, CA, June 1--July 4, pp.
365
370
.10.1109/ECTC32696.2021.00068
46.
Lee
,
O.-H.
,
Chiu
,
W.-L.
,
Chang
,
H.-H.
,
Chiang
,
C.-W.
,
Yu
,
S.-C.
,
Yang
,
T.-Y. O.
,
Hsiao
,
S.-C.
,
Ko
,
T.-Y.
,
Lin
,
Y.-M.
, and
Wang
,
C.-H.
,
2024
, “
Low-Temperature Nanocrystalline Cu/Polymer Hybrid Bonding With Tailored CMP Process
,” 74th Electronic Components and Technology Conference (
ECTC
), Denver, CO, May 28--31, pp.
1863
1867
.10.1109/ECTC51529.2024.00312
47.
Nakamura
,
Y.
,
Kondo
,
Y.
,
Hayama
,
K.
,
Tanaka
,
F. L.
, and
Inoue
,
F.
,
2024
, “
Surface Topography Control for Polymer/Cu Hybrid Bonding
,”
Proceedings of the 2024 International Conference on Electronics Packaging
(
ICEP
), Toyama, Japan, Apr. 17--20, pp.
225
226
.10.23919/ICEP61562.2024.10535664
48.
Widodo
,
T.
,
Brun
,
X.
,
Lianto
,
P.
,
Tan
,
A.
,
Lie
,
J.
,
Lim
,
P.
, and
See
,
G.
,
2024
, “
A CMP Process for Hybrid Bonding Application With Conventional/nt-Cu and SixNy/SixOy Dielectrics
,” 74th Electronic Components and Technology Conference (
ECTC
), Denver, CO, May 28--31, pp.
2058
2061
.10.1109/ECTC51529.2024.00351
49.
Wang
,
S.
,
Zhang
,
H.
,
Tian
,
Z.
,
Liu
,
T.
,
Sun
,
Y.
,
Zhang
,
Y.
,
Dong
,
F.
, and
Liu
,
S.
,
2022
, “
Optimization of Cu Protrusion of Wafer-to-Wafer Hybrid Bonding for HBM Packages Application
,”
Mater. Sci. Semicond. Process.
,
152
, p.
107063
.10.1016/j.mssp.2022.107063
50.
Roy
,
S. C.
,
Guan
,
C. G.
,
Venkataraman
,
N.
,
Lee
,
W.
, and
Singh
,
N.
,
2023
, “
Cu and Barrier CMP Process Development With Fine 1 μm Cu Bond Pad and 2.5 μm Pitch for Wafer-to-Wafer Hybrid Bonding
,” 25th Electronics Packaging Technology Conference (
EPTC
), Singapore, Dec. 5--8, pp.
135
138
.10.1109/EPTC59621.2023.10457780
51.
Hu
,
Z.-J.
,
Qu
,
X.-P.
,
Lin
,
H.
,
Huang
,
R.-D.
,
Ge
,
X.-C.
,
Li
,
M.
,
Chen
,
S.-M.
, and
Zhao
,
Y.-H.
,
2019
, “
Cu CMP Process Development and Characterization of Cu Dishing With 1.8 μm Cu Pad and 3.6 μm Pitch in Cu/SiO2 Hybrid Bonding
,”
Jpn. J. Appl. Phys.
,
58
(
SH
), p.
SHHC01
.10.7567/1347-4065/ab17c4
52.
Sherwood
,
T.
,
Patlolla
,
R.
,
Salfelder
,
J.
,
Kasbauer
,
T.
,
Sreenivasan
,
R.
,
Li
,
K.
,
Ley
,
R.
,
Probst
,
G.
,
Appell
,
J.
, and
Ahn
,
K. C.
,
2023
, “
Aggressive Pitch Scaling (Sub-0.5 μm) of W2W Hybrid Bonding Through Process Innovations
,” 73rd Electronic Components and Technology Conference (
ECTC
), Orlando, FL, May 30--June 2, pp.
13
18
.10.1109/ECTC51909.2023.00010
53.
Rim
,
D.
,
Lee
,
B.
,
Park
,
J.
,
Cho
,
C.
,
Kang
,
J.
, and
Jin
,
I.
,
2022
, “
The Wafer Bonding Yield Improvement Through Control of SiCN Film Composition and Cu Pad Shape
,” 72nd Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 31--June 3, pp.
674
678
.10.1109/ECTC51906.2022.00113
54.
Park
,
J.
,
Lee
,
B.
,
Lee
,
H.
,
Lim
,
D.
,
Kang
,
J.
,
Cho
,
C.
,
Na
,
M.
, and
Jin
,
I.
,
2022
, “
Wafer to Wafer Hybrid Bonding for DRAM Applications
,” 72nd Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 31--June 3, pp.
126
129
.10.1109/ECTC51906.2022.00030
55.
Kim
,
J.
,
Seo
,
S.-K.
,
Kim
,
H.
,
Kim
,
Y.
,
Jo
,
C.
, and
Kim
,
D.-W.
,
2022
, “
A Study on Bonding Pad Structure and Layout for Fine Pitch Hybrid Bonding
,” 72nd Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 31--June 3, pp.
712
715
.10.1109/ECTC51906.2022.00119
56.
Dubey
,
V.
,
Wünsch
,
D.
,
Gottfried
,
K.
,
Wiemer
,
M.
,
Fischer
,
T.
,
Schermer
,
S.
,
Dittmar
,
N.
,
Helke
,
C.
,
Haase
,
M.
, and
Ghosal
,
S.
,
2023
, “
Impact of Dielectric and Copper Via Design on Wafer-to-Wafer Hybrid Bonding
,” 73rd Electronic Components and Technology Conference (
ECTC
), Orlando, FL, May 30--June 2, pp.
795
799
.10.1109/ECTC51909.2023.00138
57.
Zhang
,
B.
,
Chew
,
S.-A.
,
Stucchi
,
M.
,
Dewilde
,
S.
,
Iacovo
,
S.
,
Witters
,
L.
,
Webers
,
T.
,
Van Sever
,
K.
,
De Vos
,
J.
, and
Miller
,
A.
,
2024
, “
Scaling Cu/SiCN Wafer-to-Wafer Hybrid Bonding Down to 400 nm Interconnect Pitch
,” 74th Electronic Components and Technology Conference (
ECTC
), Denver, CO, May 28--31, pp.
312
318
.10.1109/ECTC51529.2024.00058
58.
Lee
,
S.
,
Jee
,
Y.
,
Park
,
S.
,
Lee
,
S.
,
Hwang
,
B.
,
Jo
,
G.
,
Lee
,
C.
,
Park
,
J.
,
Jang
,
A.
, and
Jung
,
H.
,
2022
, “
A Study on Memory Stack Process by Hybrid Copper Bonding (HCB) Technology
,” 72nd Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 31--June 3, pp.
1085
1089
.10.1109/ECTC51906.2022.00175
59.
Ikegami
,
Y.
,
Onodera
,
T.
,
Chiyozono
,
M.
,
Sakamoto
,
A.
,
Shimizu
,
K.
,
Kagawa
,
Y.
, and
Iwamoto
,
H.
,
2024
, “
Study of Ultra-Fine 0.4 μm Pitch Wafer-to-Wafer Hybrid Bonding and Impact of Bonding Misalignment
,” 74th Electronic Components and Technology Conference (
ECTC
), Denver, CO, May 28--31, pp.
299
304
.10.1109/ECTC51529.2024.00056
60.
Kagawa
,
Y.
,
Kamibayashi
,
T.
,
Yamano
,
Y.
,
Nishio
,
K.
,
Sakamoto
,
A.
,
Yamada
,
T.
,
Shimizu
,
K.
,
Hirano
,
T.
, and
Iwamoto
,
H.
,
2022
, “
Development of Face-to-Face and Face-to-Back Ultra-Fine Pitch Cu-Cu Hybrid Bonding
,” 72nd Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 31--June 3, pp.
306
311
.10.1109/ECTC51906.2022.00057
61.
Faure
,
M.
,
Dubarry
,
C.
,
Renaud
,
P.
,
Baudin
,
F.
,
Dominguez
,
S.
,
Abadie
,
K.
,
Morales
,
C.
,
Matei
,
C.
, and
Fournel
,
F.
,
2024
, “
Ultra Low Temperature Hybrid Bonding: Morphological and Electrical Characterizations
,” 10th Electronics System-Integration Technology Conference (
ESTC
), Berlin, Germany, Sept. 11--13, pp.
1
6
.10.1109/ESTC60143.2024.10712151
62.
Liang
,
S.
,
Liang
,
Y.
,
Wu
,
G. C.
,
Yee
,
K.
,
Wang
,
C.
, and
Douglas
,
C.
,
2023
, “
Reliability Performance on Fine-Pitch SoIC™ Bond
,” 73rd Electronic Components and Technology Conference (
ECTC
), Orlando, FL, May 30--June 2, pp.
783
787
.10.1109/ECTC51909.2023.00136
63.
Hwang
,
B.
,
Kim
,
S.
,
Lee
,
J.
,
Lee
,
S.
,
Jee
,
Y.
,
Park
,
S.
,
Jo
,
G.
,
Kim
,
K.
,
Han
,
S.
, and
Kim
,
I.
,
2023
, “
A Study on the Surface Activation of Cu and Oxide for Hybrid Bonding Joint Interface
,” 73rd Electronic Components and Technology Conference (
ECTC
), Orlando, FL, May 30--June 2, pp.
78
82
.10.1109/ECTC51909.2023.00022
64.
Fang
,
J.-P.
,
Wang
,
Q.
,
Yu
,
J.-X.
,
Wang
,
Z.-Q.
,
Zhou
,
Y.-K.
,
Zheng
,
K.
, and
Cai
,
J.
,
2024
, “
Low Temperature Cu/SiO2 Hybrid Bonding With Protruding Copper Pads
,” 74th Electronic Components and Technology Conference (
ECTC
), Denver, CO, May 28--31, pp.
1911
1915
.10.1109/ECTC51529.2024.00323
65.
Hsiao
,
H.-Y.
,
Liu
,
C.-M.
,
Lin
,
H.-W.
,
Liu
,
T.-C.
,
Lu
,
C.-L.
,
Huang
,
Y.-S.
,
Chen
,
C.
, and
Tu
,
K.-N.
,
2012
, “
Unidirectional Growth of Microbumps on (111)-Oriented and Nanotwinned Copper
,”
Science
,
336
(
6084
), pp.
1007
1010
.10.1126/science.1216511
66.
He
,
P.-S.
, and
Chen
,
C.
,
2024
, “
Comparison of Organic and Inorganic Dielectric Hybrid Bonding With Highly 〈111〉-Oriented Nanotwinned Cu
,” 74th Electronic Components and Technology Conference (
ECTC
), Denver, CO, May 28--31, pp.
1998
2002
.10.1109/ECTC51529.2024.00339
67.
Chiu
,
W.-L.
,
Lee
,
O.-H.
,
Chang
,
H.-H.
,
Lo
,
J. Y.-J.
,
Shih
,
C.-L.
,
Chiu
,
H.-Y.
,
Wang
,
C.-H.
, and
Lo
,
W.-C.
,
2024
, “
Fine Pitch and Low Temperature Nanocrystalline-Nanotwinned Cu and SiCN-to-SiO2 Wafer-to-Wafer Hybrid Bonding
,” 74th Electronic Components and Technology Conference (
ECTC
), Denver, CO, May 28--31, pp.
319
324
.10.1109/ECTC51529.2024.00059
68.
Ren
,
H.
,
Yang
,
Y.-T.
, and
Iyer
,
S. S.
,
2022
, “
Recess Effect Study and Process Optimization of Sub-10 μm Pitch Die-to-Wafer Hybrid Bonding
,” 72nd Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 31--June 3, pp.
149
156
.10.1109/ECTC51906.2022.00034
69.
He
,
P.-S.
,
Tu
,
C.-W.
,
Shie
,
K.-C.
,
Liu
,
C.-Y.
,
Tsai
,
H.-Y.
,
Tran
,
D.-P.
, and
Chen
,
C.
,
2024
, “
Chemical Mechanical Planarization of Nanotwinned Copper/Polyimide for Low Temperature Hybrid Bonding
,”
J. Electroanal. Chem.
,
969
, p.
118544
.10.1016/j.jelechem.2024.118544
70.
Chiu
,
W.-L.
,
Lee
,
O.-H.
,
Chiang
,
C.-W.
, and
Chang
,
H.-H.
,
2022
, “
Low-Temperature Wafer-to-Wafer Hybrid Bonding by Nanocrystalline Copper
,” 72nd Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 31--June 3, pp.
679
684
.10.1109/ECTC51906.2022.00114
71.
Tippabhotla
,
S. K.
,
Ji
,
L.
, and
Han
,
Y.
,
2022
, “
Numerical Simulation of Cu/Polymer-Dielectric Hybrid Bonding Process Using Finite Element Analysis
,” 72nd Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 31--June 3, pp.
1695
1703
.10.1109/ECTC51906.2022.00267
72.
Agrawal
,
P. M.
,
Rice
,
B. M.
, and
Thompson
,
D. L.
,
2002
, “
Predicting Trends in Rate Parameters for Self-Diffusion on FCC Metal Surfaces
,”
Surf. Sci.
,
515
(
1
), pp.
21
35
.10.1016/S0039-6028(02)01916-7
73.
Liu
,
C.-M.
,
Lin
,
H.-W.
,
Huang
,
Y.-S.
,
Chu
,
Y.-C.
,
Chen
,
C.
,
Lyu
,
D.-R.
,
Chen
,
K.-N.
, and
Tu
,
K.-N.
,
2015
, “
Low-Temperature Direct Copper-to-Copper Bonding Enabled by Creep on (111) Surfaces of Nanotwinned Cu
,”
Sci. Rep.
,
5
(
1
), p.
9734
.10.1038/srep09734
74.
Ilie
,
F.
, and
Laurian
,
T.
,
2015
, “
Investigation Into the Effect of Concentration of Benzotriazole on the Selective Layer Surface in the Chemical Mechanical Planarization Process
,”
J. Mater. Eng. Perform.
,
24
(
12
), pp.
4919
4927
.10.1007/s11665-015-1751-3
75.
Nagar
,
M.
,
Starosvetsky
,
D.
,
Vaes
,
J.
, and
Ein-Eli
,
Y.
,
2010
, “
Potassium Sorbate as an Inhibitor in Copper Chemical Mechanical Planarization Slurry. Part I. Elucidating Slurry Chemistry
,”
Electrochim. Acta
,
55
(
10
), pp.
3560
3571
.10.1016/j.electacta.2009.12.088
76.
Lai
,
C. L.
, and
Lin
,
K. S.
,
2006
, “
Sludge Conditioning Characteristics of Copper Chemical Mechanical Polishing Wastewaters Treated by Electrocoagulation
,”
J. Hazard. Mater.
,
136
(
2
), pp.
183
187
.10.1016/j.jhazmat.2005.05.042
77.
Hong
,
J.
,
Niu
,
X.
,
Liu
,
Y.
,
He
,
Y.
,
Zhang
,
B.
,
Wang
,
J.
,
Han
,
L.
,
Yan
,
C.
, and
Zhang
,
J.
,
2016
, “
Effect of a Novel Chelating Agent on Defect Removal During Post-CMP Cleaning
,”
Appl. Surf. Sci.
,
378
, pp.
239
244
.10.1016/j.apsusc.2016.03.230
78.
Venkataswamy
,
R.
,
Trimble
,
L.
,
McDonald
,
A.
,
Nevers
,
D.
,
Bengochea
,
L. V.
,
Carswell
,
A.
,
Rossner
,
A.
, and
Seo
,
J.
,
2024
, “
Environmental Impact Assessment of Chemical Mechanical Planarization Consumables: Challenges, Future Needs, and Perspectives
,”
ACS Sustainable Chem. Eng.
,
12
(
32
), pp.
11841
11855
.10.1021/acssuschemeng.4c03195
79.
Lee
,
H.
,
Kim
,
H.
, and
Jeong
,
H.
,
2022
, “
Approaches to Sustainability in Chemical Mechanical Polishing (CMP): A Review
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
9
(
1
), pp.
349
367
.10.1007/s40684-021-00406-8
80.
Hsu
,
L.
,
2023
, “
Draft Amendments to the Air Pollution Control and Emission Standards for the Semiconductor Manufacturing Industry Pre-Announced by the Environmental Protection Administration (Taiwan)
,” Lee, Tsai and Partners, Taipei, Taiwan.https://www.lexology.com/library/detail.aspx?g=6e97c509-b270-40cc-8c1a-00d555c248ce#:~:text=In%20view%20of%20the%20prosperous,February%2018%2C%202023%20the%20draft
81.
Research
,
I.
,
2021
, “
Global CMP Pads Sales Market Report 2021
,” India, Report No. 255469, https://www.reportocean.com/industry-verticals/details?report_id=bis196968&cat_title=Semiconductor%20and%20Electronics.
82.
Dornfeld
,
D. A.
,
2010
, “
Opportunities and Challenges to Sustainable Manufacturing and CMP
,”
MRS Online Proc. Libr.
,
1157
(
1
), p.
308
.10.1557/PROC-1157-E03-08
83.
Lee
,
H.
,
Park
,
S.
, and
Jeong
,
H.
,
2013
, “
Evaluation of Environmental Impacts During Chemical Mechanical Polishing (CMP) for Sustainable Manufacturing
,”
J. Mech. Sci. Technol.
,
27
(
2
), pp.
511
518
.10.1007/s12206-012-1241-6
You do not currently have access to this content.