Abstract

Reliability risk in solder joints has been commonly linked to various failure mechanisms, with electromigration (EM) and fatigue among the prominent drivers. Even though these failure mechanisms often occur simultaneously, typical accelerated tests are based on a single failure mechanism. Consequently, the effect of multiple interacting failure mechanisms is ignored, which may underestimate reliability risk. This common practice has the potential to reduce life prediction accuracy. To address this gap, in this paper, we present an experimental setup that is developed and used to simultaneously evaluate SAC 305 solder joint lifetime under electromigration and fatigue failure mechanisms using sequential and concurrent approaches. The sequential approach involves prestressing the solder joint using a fixed current density and temperature until the test vehicle attains a specified rise in resistance. After that, an isothermal fatigue load was applied at three prescribed temperatures. The data collected enable the estimation of parameters used for reliability prediction. On the other hand, the concurrent case involves the simultaneous application of current density, temperature, and cyclic mechanical load to the solder joint. The correlation of the experiment and complementary numerically simulated strain energy density (SED) resulted in an improved, physic-based reliability model, which has the added benefit of reduced time and cost of data collection, especially during new product development. Unlike the concurrent approach, the sequential approach shows a defect-driven failure mode. The prediction accuracy of the concurrent-based derived characteristic life model compared to that of experiment-derived characteristic life was found to be ±25%.

References

1.
Igliński
,
H.
, and
Babiak
,
M.
,
2017
, “
Analysis of the Potential of Autonomous Vehicles in Reducing the Emissions of Greenhouse Gases in Road Transport
,”
Procedia Eng.
,
192
, pp.
353
358
.10.1016/j.proeng.2017.06.061
2.
Karakoc
,
T. H.
,
Colpan
,
C. O.
,
Ekici
,
S.
, and
Yetik
,
O.
,
2022
, “
Promising Fuels and Green Energy Technologies for Aviation
,”
Int. J. Green Energy
, p.
1
.10.1080/15435075.2022.2082253
3.
Al-Ghaili
,
A. M.
,
Kasim
,
H.
,
Aris
,
H.
, and
Al-Hada
,
N. M.
,
2022
, “
Can Electric Vehicles be an Alternative for Traditional Fossil-Fuel Cars With the Help of Renewable Energy Sources Towards Energy Sustainability Achievement?
,”
Energy Inform.
,
5
(
S4
), p.
60
.10.1186/s42162-022-00234-3
4.
Gabriel
,
O. E.
, and
Huitink
,
D. R.
,
2023
, “
Failure Mechanisms Driven Reliability Models for Power Electronics: A Review
,”
ASME J. Electron. Packag.
,
145
(
2
), p.
020801
.10.1115/1.4055774
5.
Pecht
,
M.
, and
Gu
,
J.
,
2009
, “
Physics-of-Failure-Based Prognostics for Electronic products Trans
,”
Inst. Meas. Control
,
31
(
3–4
), pp.
309
322
.10.1177/0142331208092031
6.
Black
,
J.
,
1967
, “
Mass Transport of Aluminum by Momentum Exchange With Conducting Electrons
,”
Sixth Annual Reliability Physics Symposium
,
Los Angeles, CA
, Nov. 6–8, pp.
148
159
.10.1109/RELPHY.2005.1493053
7.
Korhonen
,
M. A.
,
Bo/rgesen
,
P.
,
Tu
,
K. N.
, and
Li
,
C.-Y.
,
1993
, “
Stress Evolution Due to Electromigration in Confined Metal Lines
,”
J. Appl. Phys.
,
73
(
8
), pp.
3790
3799
.10.1063/1.354073
8.
Zhao
,
W.
,
Zhang
,
R.
, and
Wang
,
D.
,
2022
, “
Recent Progress in Physics-Based Modeling of Electromigration in Integrated Circuit Interconnects
,”
Micromachines
,
13
(
6
), p.
883
.10.3390/mi13060883
9.
Coffin
,
L. F. J.
,
1954
, “
A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal
,”
Trans. ASME
,
76
(
6
), pp.
931
949
.10.1115/1.4015020
10.
Knecht
,
S.
, and
Fox
,
L.
,
1991
, “
Integrated Matrix Creep: Application to Accelerated Testing and Lifetime Prediction
,”
Solder Joint Reliability Theory and Applications
,
J. H.
Lau
, ed.,
Van Nostrand Reinhold
,
New York
.10.1007/978-1-4615-3910-0_16
11.
Darveaux
,
R. F.
,
2002
, “
Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and Fatigue Life Prediction
,”
ASME J. Electron. Packag.
,
124
(
3
), pp.
147
154
.10.1115/1.1413764
12.
Yang
,
Y.
,
Li
,
Y.
,
Lu
,
H.
,
Yu
,
C.
, and
Chen
,
J.
,
2013
, “
Interdiffusion at the Interface Between Sn-Based Solders and Cu Substrate
,”
Microelectron. Reliab.
,
53
(
2
), pp.
327
333
.10.1016/j.microrel.2012.08.013
13.
Yue
,
W.
,
Qin
,
H.
,
Zhou
,
M.
,
Ma
,
X.
, and
Zhang
,
X.
,
2014
, “
Electromigration Induced Microstructure Evolution and Damage in Asymmetric Cu/Sn-58Bi/Cu Solder Interconnect Under Current Stressing
,”
Trans. Nonferrous Met. Soc. China
,
24
(
5
), pp.
1619
1628
.10.1016/S1003-6326(14)63233-7
14.
Hung
,
Y. M.
, and
Chen
,
C. M.
,
2008
, “
Electromigration of Sn-9 wt. %Zn Solder
,”
J. Electron. Mater.
,
37
(
6
), pp.
887
893
.10.1007/s11664-008-0402-y
15.
Chen
,
C.
,
Hung
,
Y.
, and
Lin
,
C.
,
2009
, “
Electromigration of Sn–8 wt.% Zn–3 wt.% Bi and Sn–9 wt.% Zn–1 wt.% Cu Solders
,”
J. Alloys Compd.
,
475
(
1–2
), pp.
238
244
.10.1016/j.jallcom.2008.07.106
16.
Yamanaka
,
K.
,
Tsukada
,
Y.
, and
Suganuma
,
K.
,
2006
, “
Electromigration Effect on Solder Bump in Cu/Sn-3Ag-0.5Cu/Cu System
,”
Scr. Mater.
,
55
, pp.
867
870
.10.1016/j.scriptamat.2006.07.053
17.
Abdulhamid
,
M.
,
Basaran
,
C.
, and
Lai
,
Y. S.
,
2009
, “
Thermomigration vs. electromigration in Microelectronics Solder Joints
,”
IEEE Trans. Adv. Packag.
,
32
, pp.
627
635
.10.1109/TADVP.2009.2018293
18.
Lai
,
Y.-S.
,
Chen
,
K.-M.
,
Kao
,
C.-L.
,
Lee
,
C.-W.
, and
Chiu
,
Y.-T.
,
2007
, “
Electromigration of Sn–37Pb and Sn–3Ag–1.5 cu/Sn–3Ag–0.5 cu Composite Flip-Chip Solder Bumps With Ti/Ni (V)/cu Under Bump Metallurgy
,”
Microelectron. Reliab.
,
47
(
8
), pp.
1273
1279
.10.1016/j.microrel.2006.09.023
19.
Chen
,
C. M.
, and
Chen
,
S. W.
,
2000
, “
Electromigration Effect Upon the Zn/Ni and Bi/Ni Interfacial Reactions
,”
J. Electron. Mater.
,
29
(
10
), pp.
1222
1228
.10.1007/s11664-000-0016-5
20.
Chen
,
S. W.
, and
Chen
,
C. M.
,
2003
, “
Electromigration Effects Upon Interfacial Reactions
,”
JOM
,
55
(
2
), pp.
62
67
.10.1007/s11837-003-0230-8
21.
Chen
,
W.
,
Chen
,
M.
,
Wang
,
H.
, and
Hsu
,
M.
,
2012
, “
Effects of Electromigration on Electronic Solder Joints
,”
Lead‐Free Solders: Materials Reliability for Electronics
, Wiley and Sons, NJ, pp.
401
422
.
22.
Basaran
,
C.
,
Li
,
S.
,
Hopkins
,
D. C.
, and
Veychard
,
D.
,
2009
, “
Electromigration Time to Failure of SnAgCuNi Solder Joints
,”
J. Appl. Phys.
,
106
(
1
), p.
013707
.10.1063/1.3159012
23.
Tian
,
T.
,
Gusak
,
A. M.
,
Liashenko
,
O. Y.
,
Han
,
J.-K.
,
Choi
,
D.
, and
Tu
,
K.-N.
,
2012
, “
A New Physical Model for Lifetime Prediction of Pb-Free Solder Joints in Electromigration Tests
,”
IEEE 62nd Electronic Components and Technology Conference
,
San Diego, CA
, May 29–June 1, pp.
741
746
.10.1109/ECTC.2012.6248915
24.
Yao
,
W.
, and
Basaran
,
C.
,
2013
, “
Electromigration in Lead-Free Solder Joints Under High-Frequency Pulse Current: An Experimental Study
,”
Int. J. Damage Mech.
,
22
(
8
), pp.
1127
1143
.10.1177/1056789513477668
25.
Vinson
,
W.
, and
Huitink
,
D.
,
2023
, “
Mechanical Stress State Consideration for Enhanced Electromigration Life Prediction in Aluminum Wire Bonds
,”
Microelectron. Reliab.
,
149
, p.
115185
.10.1016/j.microrel.2023.115185
26.
Lihua
,
L.
, and
Yong
,
L.
,
2006
, “
7th International Conference on Electronic Packaging Technology
,”
International Conference on Electronics Packaging Technology (ICEPT) 2006
,
Shanghai, China
, Aug. 26–29, pp.
1
5
.https://test.edacentrum.de/en/node/46841
27.
Syed
,
A. R.
,
Panczak
,
T.
,
Darveaux
,
R.
,
Lee
,
S.
,
Lee
,
C.
, and
Partridge
,
J.
,
1999
, “
Solder Joint Reliability of Chip Array BGA
,”
J. Surf. Mount Technol.
,
12
, pp.
1
7
.
28.
Solomon
,
H. D.
, and
Tolksdorf
,
E. D.
,
1995
, “
Energy Approach to the Fatigue of 60/40 Solder: Part I—Influence of Temperature and Cycle Frequency
,”
ASME J. Electron. Packag.
,
117
(
2
), pp.
130
135
.10.1115/1.2792079
29.
Shi
,
X.
,
Pang
,
H.
,
Zhou
,
W.
, and
Wang
,
Z.
,
2000
, “
Low Cycle Fatigue Analysis of Temperature and Frequency Effects in Eutectic Solder Alloy
,”
Int. J. Fatigue
,
22
(
3
), pp.
217
228
.10.1016/S0142-1123(99)00124-3
30.
Morrow
,
J.
,
1965
, “
Cyclic Plastic Strain Energy and Fatigue of Metals
,”
Internal Friction, Damping, and Cyclic Plasticity
,
B. J.
Lazan
, ed.,
American Society for Testing & Materials
,
West Conshohocken
, PA, p.
45
.
31.
Weglinski
,
R.
,
2007
,
Highly Accelerated Stress Screening for Air-Cooled Switching Power Supplies
,
TDI Power
,
Hackettstown, NJ
.
32.
Marbut
,
C. J.
,
Montazeri
,
M.
, and
Huitink
,
D. R.
,
2018
, “
Rapid Solder Interconnect Fatigue Life Test Methodology for Predicting Thermomechanical Reliability
,”
IEEE Trans. Device Mater. Reliab.
,
18
(
3
), pp.
412
421
.10.1109/TDMR.2018.2851541
33.
J-STD-020F
, 2022, “
Moisture/Reflow Sensitivity Classification for Non-Hermetic Solid State Surface Mount Devices
,” JEDEC, Arlington, VA, pp.
1
89
.https://standards.globalspec.com/std/14579558/j-std-020f
34.
Kuo
,
S. M.
, and
Lin
,
K. L.
,
2008
, “
Polarity Effect of Electromigration on Intermetallic Compound Formation in a Cu/Sn–9Zn/Cu Sandwich
,”
J. Mater. Res.
,
23
(
4
), pp.
1087
1094
.10.1557/jmr.2008.0142
35.
Okafor
,
E. G.
,
Harris
,
J.
,
Marshall
,
L.
, and
Huitink
,
D. R.
,
2023
, “
Laminated Transient Liquid Phase Preform and Bond Characterization for High-Temperature Power Electronics Application
,”
J. Mater. Sci.: Mater. Electron.
,
34
, p.
891
.10.1007/s10854-023-10266-4
36.
Otiaba
,
K. C.
,
Bhatti
,
R.
,
Ekere
,
N.
,
Mallik
,
S.
, and
Ekpu
,
M.
,
2013
, “
Finite Element Analysis of the Effect of Silver Content for Sn–Ag–Cu Alloy Compositions on Thermal Cycling Reliability of Solder Die Attach
,”
Eng. Failure Anal.
,
28
, pp.
192
207
.10.1016/j.engfailanal.2012.10.008
37.
Roger Corporation
, 2022, “
RO4000 Series High-Frequency Circuit Materials Datasheet
,” Roger Corporation, Chandler, AZ, Publication No. 92-141, pp.
1
4
.https://home.sandiego.edu/~ekim/e194rfs01/ro4003.pdf
38.
Darveaux
,
R.
, and
Syed
,
A.
,
2000
, “
Reliability of Area Array Solder Joints in Bending
,”
SMTA International, Proceedings 2000
,
Surface Mount Technology Association
,
Edina, MN
, pp.
313
324
.
39.
Bernasko
,
P. K.
,
Mallik
,
S.
, and
Takyi
,
G.
,
2015
, “
Effect of Intermetallic Compound Layer Thickness on the Shear Strength of 1206 Chip Resistor Solder Joint
,”
Soldering Surf. Mount Technol.
,
27
(
1
), pp.
52
58
.10.1108/SSMT-07-2013-0019
40.
Choudhury
,
S. F.
,
2016
, “
Intermetallic Compounds and Their Effects on the Mechanical Performance of Micro Scale Solder Bonds
,”
Ph.D. dissertation
,
University of Connecticut
,
Storrs, CT
.https://www.researchgate.net/publication/311559659_Intermetallic_Compounds_and_Their_Effects_on_the_Mechanical_Performance_of_Micro_Scale_Solder_Bonds
41.
Abueed
,
M.
,
Athamenh
,
R.
,
Hamasha
,
S.
,
Suhling
,
J.
, and
Lall
,
P.
,
2020
, “
Effect of Fatigue on Individual SAC305 Solder Joints Reliability at Elevated Temperature
,” 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
Orlando, FL
, July 21–23, pp.
1043
1050
.10.1109/ITherm45881.2020.9190296
42.
JEDEC
, 2016, “
Failure Mechanisms and Models for Semiconductor Devices
,” JEDEC, Arlington, VA, Publication No. JEP122H, pp.
1
104
.
43.
Bani Hani
,
D.
,
Al Athamneh
,
R.
,
Abueed
,
M.
, and
Hamasha
,
S.
,
2023
, “
Reliability Modeling of the Fatigue Life of Lead-Free Solder Joints at Different Testing Temperatures and Load Levels Using the Arrhenius Model
,”
Sci. Rep.
,
13
(
1
), p.
2493
.10.1038/s41598-023-29636-3
44.
Gharaibeh
,
M. A.
, and
Wilde
,
J.
,
2024
, “
Applying Anand Versus Garofalo Creep Constitutive Models for Simulating Sintered Silver Die Attachments in Power Electronics
,”
J. Strain Anal. Eng. Des.
,
59
(
1
), pp.
31
43
.10.1177/03093247231190449
You do not currently have access to this content.