Abstract

Ball grid arrays (BGAs) offer significant advantages in the automotive industry, such as their small size and high integration density, making them a promising electronic packaging approach. However, the operating environment of automobiles is more complex compared to other applications, primarily due to vibrations generated by power engines and oscillations caused by pavement roughness. The resonant frequencies of electronic packaging structures play a crucial role in system reliability and safety. However, accurately describing the implicit relationship between system resonant frequencies and material and geometrical parameters can be challenging. A Kriging surrogate model (KSM) is proposed by the combination of the Latin Hypercube stochastic sampling with finite element computation. Four different BGA configurations are established with either the initial values in the deterministic model or the specified sampling interval ranges in the stochastic model. The results of the finite element model (FEM) for BGA electronic packaging are validated and demonstrate qualitative agreement with published literature. The impacts of material and geometrical parameters on the resonant frequencies are investigated and compared. The mean, maximum, minimum, and variance are recorded based on a large database of stochastic samples. The feasibility of KSM for the resonant frequency prediction of BGA is confirmed by its satisfactory accuracy and computational efficiency.

References

1.
Samavatian
,
M.
,
Ilyashenko
,
L. K.
,
Surendar
,
A.
,
Maseleno
,
A.
, and
Samavatian
,
V.
,
2018
, “
Effects of System Design on Fatigue Life of Solder Joints in BGA Packages Under Vibration at Random Frequencies
,”
J. Electron. Mater.
,
47
(
11
), pp.
6781
6790
.10.1007/s11664-018-6600-3
2.
Doranga
,
S.
,
Schuldt
,
M.
, and
Khanal
,
M.
,
2022
, “
Effect of Stiffening the Printed Circuit Board in the Fatigue Life of the Solder Joint
,”
Materials
,
15
(
18
), p.
6208
.10.3390/ma15186208
3.
Darveaux
,
R.
,
Heckman
,
J.
,
Syed
,
A.
, and
Mawer
,
A.
,
2000
, “
Solder Joint Fatigue Life of Fine Pitch BGAs–Impact of Design and Material Choices
,”
Microelectron. Reliab.
,
40
(
7
), pp.
1117
1127
.10.1016/S0026-2714(00)00038-X
4.
Holub
,
I. R.
,
Pitarresi
,
J. M.
, and
Singler
,
T. J.
,
1996
, “
Effect of Solder Joint Geometry on the Predicted Fatigue Life of BGA Solder Joints
,”
InterSociety Conference on Thermal Phenomena in Electronic Systems, I-THERM V
, Orlando, FL, May 29–June 1, pp.
187
194
.10.1109/ITHERM.1996.534561
5.
Gharaibeh
,
M.
,
Stewart
,
A. J.
,
Su
,
Q. T.
, and
Pitarresi
,
J. M.
,
2019
, “
Experimental and Numerical Investigations of the Vibration Reliability of BGA and LGA Solder Configurations and SAC105 and 63Sn37Pb Solder Alloys
,”
Soldering Surf. Mount Technol.
,
31
(
2
), pp.
77
84
.10.1108/SSMT-07-2018-0020
6.
Kim
,
Y.
,
Noguchi
,
H.
, and
Amagai
,
M.
,
2006
, “
Vibration Fatigue Reliability of BGA-IC Package With Pb-Free Solder and Pb–Sn Solder
,”
Microelectron. Reliab.
,
46
(
2–4
), pp.
459
466
.10.1016/j.microrel.2005.02.003
7.
Liu
,
X.
,
Sooklal
,
V. K.
,
Verges
,
M. A.
, and
Larson
,
M. C.
,
2006
, “
Experimental Study and Life Prediction on High Cycle Vibration Fatigue in BGA Packages
,”
Microelectron. Reliab.
,
46
(
7
), pp.
1128
1138
.10.1016/j.microrel.2005.09.011
8.
Park
,
T. Y.
,
Park
,
J. C.
, and
Oh
,
H. U.
,
2018
, “
Evaluation of Structural Design Methodologies for Predicting Mechanical Reliability of Solder Joint of BGA and TSSOP Under Launch Random Vibration Excitation
,”
Int. J. Fatigue
,
114
, pp.
206
216
.10.1016/j.ijfatigue.2018.05.012
9.
Yu
,
D.
,
Al-Yafawi
,
A.
,
Nguyen
,
T. T.
,
Park
,
S.
, and
Chung
,
S.
,
2011
, “
High-Cycle Fatigue Life Prediction for Pb-Free BGA Under Random Vibration Loading
,”
Microelectron. Reliab.
,
51
(
3
), pp.
649
656
.10.1016/j.microrel.2010.10.003
10.
Han
,
C.
,
Oh
,
C. M.
, and
Hong
,
W. S.
,
2012
, “
Prognostics Model Development of BGA Assembly Under Vibration Environment
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
2
(
8
), pp.
1329
1334
.10.1109/TCPMT.2012.2190141
11.
Liu
,
F.
,
Lu
,
Y.
,
Wang
,
Z.
, and
Zhang
,
Z.
,
2015
, “
Numerical Simulation and Fatigue Life Estimation of BGA Packages Under Random Vibration Loading
,”
Microelectron. Reliab.
,
55
(
12
), pp.
2777
2785
.10.1016/j.microrel.2015.08.006
12.
Liu
,
F.
, and
Meng
,
G.
,
2014
, “
Random Vibration Reliability of BGA Lead-Free Solder Joint
,”
Microelectron. Reliab.
,
54
(
1
), pp.
226
232
.10.1016/j.microrel.2013.08.020
13.
Wu
,
M. L.
, and
Barker
,
D.
,
2010
, “
Rapid Assessment of BGA Life Under Vibration and Bending, and Influence of Input Parameter Uncertainties
,”
Microelectron. Reliab.
,
50
(
1
), pp.
140
148
.10.1016/j.microrel.2009.09.006
14.
Zhang
,
X.
,
Wang
,
L.
, and
Sørensen
,
J. D.
,
2019
, “
REIF: A Novel Active-Learning Function Toward Adaptive Kriging Surrogate Models for Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
185
, pp.
440
454
.10.1016/j.ress.2019.01.014
15.
Kersaudy
,
P.
,
Sudret
,
B.
,
Varsier
,
N.
,
Picon
,
O.
, and
Wiart
,
J.
,
2015
, “
A New Surrogate Modeling Technique Combining Kriging and Polynomial Chaos Expansions–Application to Uncertainty Analysis in Computational Dosimetry
,”
J. Comput. Phys.
,
286
, pp.
103
117
.10.1016/j.jcp.2015.01.034
16.
Sen
,
O.
,
Gaul
,
N. J.
,
Choi
,
K. K.
,
Jacobs
,
G.
, and
Udaykumar
,
H. S.
,
2017
, “
Evaluation of Kriging Based Surrogate Models Constructed From Mesoscale Computations of Shock Interaction With Particles
,”
J. Comput. Phys.
,
336
, pp.
235
260
.10.1016/j.jcp.2017.01.046
17.
Mo
,
S.
,
Shi
,
X.
,
Lu
,
D.
,
Ye
,
M.
, and
Wu
,
J.
,
2019
, “
An Adaptive Kriging Surrogate Method for Efficient Uncertainty Quantification With an Application to Geological Carbon Sequestration Modeling
,”
Comput. Geosci.
,
125
, pp.
69
77
.10.1016/j.cageo.2019.01.012
18.
Marelli
,
S.
, and
Sudret
,
B.
,
2014
, “
UQLab: A Framework for Uncertainty Quantification in Matlab
,”
Proceedings of 2nd International Conference on Vulnerability, Risk Analysis and Management
,
Liverpool, UK
, July 7, pp.
2554
2563
.10.1061/9780784413609.257
19.
Santner
,
T.
,
Williams
,
B.
, and
Notz
,
W.
,
2003
, “
The Design and Analysis of Computer Experiments
,”
Springer Series in Statistics
,
Springer
,
Berlin
.
20.
Shi
,
J.
,
Chu
,
L.
, and
Braun
,
R.
,
2019
, “
A Kriging Surrogate Model for Uncertainty Analysis of Graphene Based on a Finite Element Method
,”
Int. J. Mol. Sci.
,
20
(
9
), p.
2355
.10.3390/ijms20092355
21.
Chu
,
L.
,
Shi
,
J.
, and
Souza de Cursi
,
E.
,
2019
, “
Kriging Surrogate Model for Resonance Frequency Analysis of Dental Implants by Latin Hypercube Based Finite Element Method
,”
Appl. Bionics Biomech.
,
2019
, pp.
1
14
.10.1155/2019/3768695
22.
Lataniotis
,
C.
,
Marelli
,
S.
, and
Sudret
,
B.
,
2019
, “
UQLAB User Manual – Kriging (Gaussian Process Modelling)
,”
Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich
,
Report No. UQLab-V1.2-105.
You do not currently have access to this content.