Abstract

A significant number of investigations have been performed to develop and optimize cold plates for direct-to-chip cooling of processor packages. Many investigations have reported computational simulations using commercially available computational fluid dynamic tools that are compared to experimental data. Generally, the simulations and experimental data are in qualitative agreement but often not in quantitative agreement. Frequently, the experimental characterizations have high experimental uncertainty. In this study, extensive experimental evaluations are used to demonstrate the errors in experimental thermal measurements and the experimental artifacts during testing that lead to unacceptable inconsistency and uncertainty in the reported thermal resistance. By comparing experimental thermal data, such as the temperature at multiple positions on the processor lid, and using that data to extract a meaningful measure of thermal resistance, it is shown that the data uncertainty and inconsistency are primarily due to three factors: (1) inconsistency in the thermal boundary condition supplied by the thermal test vehicle (TTV) to the cold plate, (2) errors in the measurement and interpretation of the surface temperature of a solid surface, such as the heated lid surface, and (3) errors introduced by improper contact between cold plate and TTV. A standard thermal test vehicle (STTV) was engineered and used to provide reproducible thermal boundary conditions to the cold plate. An uncertainty analysis was performed in order to discriminate between the sources of inconsistencies in the reporting of thermal resistance, including parameters such as mechanical load distribution, methods for measuring the cold plate base, and TTV surface temperatures. A critical analysis of the classical thermal resistance definition was performed to emphasize its shortcomings for evaluating the performance of a cold plate. It is shown that the thermal resistance of cold plates based on heat exchanger theory better captures the physics of the heat transfer process when cold plates operate at high thermodynamic effectiveness.

References

1.
He
,
Z.
,
Yan
,
Y.
, and
Zhang
,
Z.
,
2021
, “
Thermal Management and Temperature Uniformity Enhancement of Electronic Devices by Micro Heat Sinks: A Review
,”
Energy
,
216
, p.
119223
.10.1016/j.energy.2020.119223
2.
Ma
,
H.
,
Duan
,
Z.
,
Ning
,
X.
, and
Su
,
L.
,
2021
, “
Numerical Investigation on Heat Transfer Behavior of Thermally Developing Flow Inside Rectangular Microchannels
,”
Case Stud. Therm. Eng.
,
24
, p.
100856
.10.1016/j.csite.2021.100856
3.
Ju
,
X.
,
Xu
,
C.
,
Zhou
,
Y.
,
Liao
,
Z.
, and
Yang
,
Y.
,
2018
, “
Numerical Investigation of a Novel Manifold Micro-Pin-Fin Heat Sink Combining Chessboard Nozzle-Jet Concept for Ultra-High Heat Flux Removal
,”
Int. J. Heat Mass Transfer
,
126
, pp.
1206
1218
.10.1016/j.ijheatmasstransfer.2018.06.059
4.
Zhu
,
Q.
,
Xia
,
H.
,
Chen
,
J.
,
Zhang
,
X.
,
Chang
,
K.
,
Zhang
,
H.
,
Wang
,
H.
,
Wan
,
J.
, and
Jin
,
Y.
,
2021
, “
Fluid Flow and Heat Transfer Characteristics of Microchannel Heat Sinks With Different Groove Shapes
,”
Int. J. Therm. Sci.
,
161
, p.
106721
.10.1016/j.ijthermalsci.2020.106721
5.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
6.
Webb
,
R. L.
,
2007
, “
Heat Exchanger Design Methodology for Electronic Heat Sinks
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
129
(
7
), pp.
899
901
.10.1115/1.2717249
7.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Introduction to Heat Transfer
, 6th ed.,
Wiley
, Hoboken, NJ.
8.
Wei
,
J.
,
2008
, “
Challenges in Cooling Design of CPU Packages for High-Performance Servers
,”
Heat Transfer Eng.
,
29
(
2
), pp.
178
187
.10.1080/01457630701686727
9.
Hamann
,
H. F.
,
Weger
,
A.
,
Lacey
,
J. A.
,
Hu
,
Z.
,
Bose
,
P.
,
Cohen
,
E.
, and
Wakil
,
J.
,
2007
, “
Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution Measurements
,”
IEEE J. Solid-State Circuits
,
42
(
1
), pp.
56
65
.10.1109/JSSC.2006.885064
10.
Feng
,
C.-P.
,
Yang
,
L.-Y.
,
Yang
,
J.
,
Bai
,
L.
,
Bao
,
R.-Y.
,
Liu
,
Z.-Y.
,
Yang
,
M.-B.
,
Lan
,
H.-B.
, and
Yang
,
W.
,
2020
, “
Recent Advances in Polymer-Based Thermal Interface Materials for Thermal Management: A Mini-Review
,”
Compos. Commun.
,
22
, p.
100528
.10.1016/j.coco.2020.100528
11.
Fletcher
,
L. S.
,
1990
, “
A Review of Thermal Enhancement Techniques for Electronic Systems
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
13
(
4
), pp.
1012
1021
.10.1109/33.62543
12.
Zhao
,
J.-W.
,
Zhao
,
R.
,
Huo
,
Y.-K.
, and
Cheng
,
W.-L.
,
2019
, “
Effects of Surface Roughness, Temperature and Pressure on Interface Thermal Resistance of Thermal Interface Materials
,”
Int. J. Heat Mass Transfer
,
140
, pp.
705
716
.10.1016/j.ijheatmasstransfer.2019.06.045
13.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
,
2005
, “
Thermal Contact Resistance at Low Contact Pressure: Effect of Elastic Deformation
,”
Int. J. Heat Mass Transfer
,
48
(
16
), pp.
3284
3293
.10.1016/j.ijheatmasstransfer.2005.02.033
14.
Pathumudy
,
R. D.
, and
Prabhu
,
K. N.
,
2021
, “
Thermal Interface Materials for Cooling Microelectronic Systems: Present Status and Future Challenges
,”
J. Mater. Sci.: Mater. Electron.
,
32
(
9
), pp.
11339
11366
.10.1007/s10854-021-05635-w
15.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
16.
Azar
,
K.
,
1997
,
Thermal Measurements in Electronics Cooling
, 1st ed.,
Taylor & Francis
, Boca Raton, FL.
17.
Kozarek
,
R. L.
,
1991
, “
Effect of Case Temperature Measurement Errors on the Junction-to-Case Thermal Resistance of a Ceramic PGA
,”
1991 Proceedings, Seventh IEEE Semiconductor Thermal Measurement and Management Symposium
, Phoenix, AZ, Feb. 12–14, pp.
44
51
.10.1109/STHERM.1991.152910
18.
Department of Defense
,
1995
, MIL-STD-883E, Test Method Standard, Micro-circuits. Method 1014.9, Department of Defense.
19.
Standard, J.
,
2008
, “
Two-Resistor Compact Thermal Model Guideline
,” JESD15-3JEDEC Solid State Technology Association.https://www.jedec.org/standardsdocuments/docs/jesd-15-3
20.
SEMI
,
1988
, “
G30-88: Test Method for Junction-to-Case Thermal Resistance Measurements of Ceramic Packages
,” Tech. rep. Assembly and Packaging Technical Committee.
21.
Yates
,
S.
,
Zhou
,
D.
,
Kung
,
E.
,
Huang Jiaming
,
Z. S.
, and
Rengang
,
L.
,
2021
, “
Cold Plate Development and Qualification
,” Report No.
ACS2022
.https://www.opencompute.org/documents/ocp-coldplate-development-and-qualification-with-integrated-comments-pdf
22.
Ortega
,
A.
,
Caceres
,
C.
,
Uras
,
U.
,
Kisitu
,
D.
,
Chowdhury
,
U.
,
Radmard
,
V.
, and
Heydari
,
A.
,
2022
, “
Determination of the Thermal Performance Limits for Single Phase Liquid Cooling Using an Improved Effectiveness-NTU Cold Plate Model
,”
ASME
Paper No. IPACK2022-97421.10.1115/IPACK2022-97421
23.
Lees
,
C. H.
,
1908
, “
Xi. Bakerian Lecture.—The Effect of Temperature and Pressure on the Thermal Conductivities of Solids.—Part II. the Effects of Low Temperatures on the Thermal and Electrical Conductivities of Certain Approximately Pure Metals and Alloys
,”
Philos. Trans. R. Soc. London Ser. A
,
208
(
427–440
), pp.
381
443
.10.1098/rsta.1908.0025
24.
Prasher
,
R. S.
,
2001
, “
Surface Chemistry and Characteristics Based Model for the Thermal Contact Resistance of Fluidic Interstitial Thermal Interface Materials
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
123
(
5
), pp.
969
975
.10.1115/1.1388301
25.
Moffat
,
R. J.
,
2007
, “
Modeling Air-Cooled Heat Sinks as Heat Exchangers
,”
23rd Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, Mar. 18–22, pp.
200
207
.10.1109/STHERM.2007.352424
You do not currently have access to this content.