Abstract

Localized heating is encountered in various scenarios, including the operation of transistors, light-emitting diodes, and some thermal spectroscopy techniques. When localized heating occurs on a scale comparable to the mean free path of the dominant energy carriers, additional thermal resistance is observed due to ballistic effects. The main objective of this study is to find a relation between this resistance, problem geometry, and material thermal properties in situations involving localized heating. Models based on the solution of the Fourier heat diffusion equation and the gray phonon Boltzmann Transport Equation are solved simultaneously to calculate the additional thermal resistances that arise from surface adjacent localized heating. Subsequently, the results are analyzed to derive the desired relationship. It is noted that in the context of localized heating resistance, the effects of geometrical variables are nonlinear and substantial, particularly when the Knudsen numbers for the boundary and heat source exceed certain thresholds. Specifically, when the Knudsen number for the surface adjacent heat source exceed 1, localized heating resistance is observed. However, when the Knudsen number based on heat source height and width surpasses 8 and 20, respectively the heat source behaves akin to a point source, no longer significantly affecting the localized heating resistance. At this juncture, the maximum resistance limit is reached.

References

1.
Etessam-Yazdani
,
K.
,
Sadeghipour
,
S. M.
, and
Asheghi
,
M.
,
2003
, “
Modeling of Localized Heating Effect in Sub-Micron Silicon Transistors
,”
ASME
Paper No. HT2003-47272.10.1115/HT2003-47272
2.
Venkatachalam
,
A.
,
James
,
W. T.
, and
Graham
,
S.
,
2011
, “
Electro-Thermo-Mechanical Modeling of GaN-Based HFETs and MOSHFETs
,”
Semicond. Sci. Technol.
,
26
(
8
), p.
085027
.10.1088/0268-1242/26/8/085027
3.
Rezgui
,
H.
,
Nasri
,
F.
,
Ben Aissa
,
M. F.
,
Belmabrouk
,
H.
, and
Guizani
,
A. A.
,
2018
, “
Modeling Thermal Performance of nano-GNRFET Transistors Using Ballistic-Diffusive Equation
,”
IEEE Trans. Electron Devices
,
65
(
4
), pp.
1611
1616
.10.1109/TED.2018.2805343
4.
Samian
,
R. S.
,
Abbassi
,
A.
, and
Ghazanfarian
,
J.
,
2014
, “
Transient Conduction Simulation of a Nano-Scale Hotspot Using Finite Volume Lattice Boltzmann Method
,”
Int. J. Mod. Phys. C
,
25
(
4
), p.
1350103
.10.1142/S0129183113501039
5.
Donmezer
,
F. N.
,
James
,
W.
, and
Graham
,
S.
,
2011
, “
The Thermal Response of Gallium Nitride HFET Devices Grown on Silicon and SiC Substrates
,”
ECS Trans.
,
41
(
6
), pp.
13
30
.10.1149/1.3629950
6.
Ni
,
C.
,
Aksamija
,
Z.
,
Murthy
,
J. Y.
, and
Ravaioli
,
U.
,
2009
, “
Coupled Electro-Thermal Simulation of MOSFETs
,”
ASME
Paper No. InterPACK2009-89182.10.1115/InterPACK2009-89182
7.
Donmezer
,
N.
, and
Graham
,
S.
,
2014
, “
The Impact of Noncontinuum Thermal Transport on the Temperature of AlGaN/GaN HFETs
,”
IEEE Trans Electron Devices
,
61
(
6
), pp.
2041
2048
.10.1109/TED.2014.2318672
8.
Murthy
,
J. Y.
,
Narumanchi
,
S. V. J.
,
Pascual-Gutierrez
,
J. A.
,
Wang
,
T.
,
Ni
,
C.
, and
Mathur
,
S. R.
,
2005
, “
Review of Multiscale Simulation in Submicron Heat Transfer
,”
Int. J. Multiscale Comput. Eng.
,
3
(
1
), pp.
5
32
.10.1615/IntJMultCompEng.v3.i1.20
9.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
,
2006
, “
Boltzmann Transport Equation-Based Thermal Modeling Approaches for Hotspots in Microelectronics
,”
Heat Mass Transfer
,
42
(
6
), pp.
478
491
.10.1007/s00231-005-0645-6
10.
Nasri
,
F.
,
Echouchene
,
F.
,
Ben Aissa
,
M. F.
,
Graur
,
I.
, and
Belmabrouk
,
H.
,
2015
, “
Investigation of Self-Heating Effects in a 10-nm SOI-MOSFET With an Insulator Region Using Electrothermal Modeling
,”
IEEE Trans Electron Devices
,
62
(
8
), pp.
2410
2415
.10.1109/TED.2015.2447212
11.
Ran
,
X.
,
Huang
,
Y.
, and
Wang
,
M.
,
2023
, “
A Hybrid Monte Carlo-Discrete Ordinates Method for Phonon Transport in Micro/Nanosystems With Rough Interfaces
,”
Int. J. Heat Mass Transfer
,
201
, p.
123624
.10.1016/j.ijheatmasstransfer.2022.123624
12.
Bao
,
H.
,
Chen
,
J.
,
Gu
,
X.
, and
Cao
,
B.
,
2018
, “
A Review of Simulation Methods in Micro/Nanoscale Heat Conduction
,”
ES Energy Environ.
,
1
(
39
), pp.
16
55
.10.30919/esee8c149
13.
Muzychka
,
Y. S.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2003
, “
Thermal Spreading Resistance of Eccentric Heat Sources on Rectangular Flux Channels
,”
ASME J. Electron. Packag.
,
125
(
2
), pp.
178
185
.10.1115/1.1568125
14.
Azarifar
,
M.
, and
Donmezer
,
N.
,
2017
, “
A Multiscale Analytical Correction Technique for Two-Dimensional Thermal Models of AlGaN/GaN HEMTs
,”
Microelectron. Reliab.
,
74
, pp.
82
87
.10.1016/j.microrel.2017.05.020
15.
Hua
,
Y.-C.
,
Li
,
H.-L.
, and
Cao
,
B.-Y.
,
2019
, “
Thermal Spreading Resistance in Ballistic-Diffusive Regime for GaN HEMTs
,”
IEEE Trans. Electron Devices
,
66
(
8
), pp.
3296
3301
.10.1109/TED.2019.2922221
16.
Shen
,
Y.
,
Hua
,
Y.-C.
,
Li
,
H.-L.
,
Sobolev
,
S. L.
, and
Cao
,
B.-Y.
,
2022
, “
Spectral Thermal Spreading Resistance of Wide-Bandgap Semiconductors in Ballistic-Diffusive Regime
,”
IEEE Trans. Electron Devices
,
69
(
6
), pp.
3047
3054
.10.1109/TED.2022.3168798
17.
Shen
,
Y.
,
Yang
,
H.-A.
, and
Cao
,
B.-Y.
,
2023
, “
Near-Junction Phonon Thermal Spreading in GaN HEMTs: A Comparative Study of Simulation Techniques by Full-Band Phonon Monte Carlo Method
,”
Int. J. Heat Mass Transfer
,
211
, p.
124284
.10.1016/j.ijheatmasstransfer.2023.124284
18.
Donmezer
,
N.
, and
Graham
,
S.
,
2014
, “
A Multiscale Thermal Modeling Approach for Ballistic and Diffusive Heat Transport in Two Dimensional Domains
,”
Int. J. Therm. Sci.
,
76
, pp.
235
244
.10.1016/j.ijthermalsci.2013.09.004
19.
Whitman
,
N. H.
,
Palmer
,
T. S.
,
Greaney
,
P. A.
,
Hosseini
,
S. A.
,
Burkes
,
D. E.
, and
Senor
,
D. J.
,
2021
, “
Gray Phonon Transport Prediction of Thermal Conductivity in Lithium Aluminate With Higher-Order Finite Elements on Meshes With Curved Surfaces
,”
J. Comput. Theor. Transp.
,
50
(
5
), pp.
483
506
.10.1080/23324309.2021.1900258
20.
Li
,
H.-L.
,
Shen
,
Y.
,
Hua
,
Y.-C.
,
Sobolev
,
S. L.
, and
Cao
,
B.-Y.
,
2023
, “
Hybrid Monte Carlo-Diffusion Studies of Modeling Self-Heating in Ballistic-Diffusive Regime for Gallium Nitride HEMTs
,”
ASME J. Electron Packag.
,
145
(
1
), p.
011203
.10.1115/1.4054698
21.
Fiveland
,
W. A.
,
1991
, “
The Selection of Discrete Ordinate Quadrature Sets for Anisotropic Scattering
,”
Fundamentals of Radiative Heat Transfer
,
160
, pp.
89
96
.https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902078669288140
22.
Donmezer
,
F. N.
,
Singh
,
D.
,
James
,
W.
,
Christensen
,
A.
,
Graham
,
S.
, and
Murthy
,
J. Y.
,
2011
, “
Lattice Boltzmann and Discrete Ordinates Methods for Phonon Transport Modeling: A Comparative Study
,”
ASME
Paper No. IMECE2011-64008.10.1115/IMECE2011-64008
23.
Hua
,
Y.-C.
, and
Cao
,
B.-Y.
,
2017
, “
Slip Boundary Conditions in Ballistic–Diffusive Heat Transport in Nanostructures
,”
Nanoscale Microscale Thermophysical Eng.
,
21
(
3
), pp.
159
176
.10.1080/15567265.2017.1344752
You do not currently have access to this content.