Abstract

This study investigates the use of cold gas spraying (CGS) as a low-temperature additive manufacturing method to bond copper onto aluminum nitride (AlN) substrates for electronic packaging of high-power applications. While the direct bond copper (DBC) technique is commonly used, it has limitations due to the large mismatch in the coefficient of thermal expansion, which affects substrate reliability. This work employed CGS to mechanically bond Cu on AlN. The study explores the effect of multiple sprays, spray angle, and spraying direction on deposition thickness, coating surface roughness, and deposited volume through a factorial design of experiments (DOE). The results, based on optical and scanning electron microscopy combined with profilometry data, showed that coatings sprayed at a 60 deg angle had a smoother profile topography and less surface roughness than those sprayed at a 90 deg angle. After depositing ten layers, a surface roughness (Sa) of around 30 μm and a coating thickness of over 300 μm were successfully attained. These findings provide valuable insights into the processing factors affecting the growth and quality of copper coatings on AlN substrates via multiple sprays, thus enabling the realization of CGS technology as a potential solution to DBC substrates for electronic packaging of wide-bandgap semiconductors.

References

1.
Bindra
,
A.
,
2018
, “
Wide-Bandgap Power Devices: Adoption Gathers Momentum
,”
IEEE Power Electron. Mag.
,
5
(
1
), pp.
22
27
.10.1109/MPEL.2017.2782404
2.
Schulz-Harder
,
J.
,
2003
, “
Advantages and New Development of Direct Bonded Copper Substrates
,”
Microelectron. Reliab.
,
43
(
3
), pp.
359
365
.10.1016/S0026-2714(02)00343-8
3.
Xu
,
L.
,
Wang
,
M.
,
Zhou
,
Y.
,
Qian
,
Z.
, and
Liu
,
S.
,
2016
, “
An Optimal Structural Design to Improve the Reliability of Al2O3–DBC Substrates Under Thermal Cycling
,”
Microelectron. Reliab.
,
56
, pp.
101
108
.10.1016/j.microrel.2015.11.013
4.
Dupont
,
L.
,
Khatir
,
Z.
,
Lefebvre
,
S.
, and
Bontemps
,
S.
,
2006
, “
Effects of Metallization Thickness of Ceramic Substrates on the Reliability of Power Assemblies Under High Temperature Cycling
,”
Microelectron. Reliab.
,
46
(
9–11
), pp.
1766
1771
.10.1016/j.microrel.2006.07.057
5.
Raoelison
,
R. N.
,
Verdy
,
C.
, and
Liao
,
H.
,
2017
, “
Cold Gas Dynamic Spray Additive Manufacturing Today: Deposit Possibilities, Technological Solutions and Viable Applications
,”
Mater. Des.
,
133
, pp.
266
287
.10.1016/j.matdes.2017.07.067
6.
Ozdemir
,
O. C.
, and
Widener
,
C. A.
,
2017
, “
Influence of Powder Injection Parameters in High-Pressure Cold Spray
,”
J. Therm. Spray Technol.
,
26
(
7
), pp.
1411
1422
.10.1007/s11666-017-0606-x
7.
Kromer
,
R.
,
Danlos
,
Y.
,
Aubignat
,
E.
,
Verdy
,
C.
, and
Costil
,
S.
,
2017
, “
Coating Deposition and Adhesion Enhancements by Laser Surface Texturing—Metallic Particles on Different Classes of Substrates in Cold Spraying Process
,”
Mater. Manuf. Processes
,
32
(
14
), pp.
1642
1652
.10.1080/10426914.2017.1364750
8.
Echeverria
,
M. J.
,
Quintero
,
P. O.
,
Ibitayo
,
D.
, and
Boteler
,
L.
,
2018
, “
Numerical Approach to Cold Gas Spray on Ceramic Substrates for Power Electronics Packaging
,”
ASME
Paper No. IPACK2018-8279.10.1115/IPACK2018-8279
9.
Guerrero
,
M.
,
Quintero
,
P.
,
Ozdemir
,
O.
, and
Schwartz
,
T.
,
2021
, “
Cold Gas Spray of Copper on Aluminum Nitride as Substrate for Power Electronics
,”
ASME
Paper No. IPACK2021-69270.10.1115/IPACK2021-69270
10.
Li
,
W.-Y.
,
Yin
,
S.
, and
Wang
,
X.-F.
,
2010
, “
Numerical Investigations of the Effect of Oblique Impact on Particle Deformation in Cold Spraying by the SPH Method
,”
Appl. Surf. Sci.
,
256
(
12
), pp.
3725
3734
.10.1016/j.apsusc.2010.01.014
11.
Li
,
C.
,
Li
,
W.
,
Wang
,
Y.
, and
Fukanuma
,
H.
,
2003
, “
Effect of Spray Angle on Deposition Characteristics in Cold Spraying
,”
Therm. Spray
, pp.
91
96
.10.31399/asm.cp.itsc2003p0091
12.
Yin
,
S.
,
Jenkins
,
R.
,
Yan
,
X.
, and
Lupoi
,
R.
,
2018
, “
Microstructure and Mechanical Anisotropy of Additively Manufactured Cold Spray Copper Deposits
,”
Mater. Sci. Eng.: A
,
734
, pp.
67
76
.10.1016/j.msea.2018.07.096
13.
Schulz-Harder
,
J.
,
2006
, “
Advanced DBC (Direct Bonded Copper) Substrates for High Power and High Voltage Electronics
,”
22nd Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, Dallas, TX, Mar. 14–16, pp.
230
231
.10.1109/STHERM.2006.1625233
14.
Sun
,
W.
,
Tan
,
A. W.-Y.
,
Wu
,
K.
,
Yin
,
S.
,
Yang
,
X.
,
Marinescu
,
I.
, and
Liu
,
E.
,
2020
, “
Post-Process Treatments on Supersonic Cold Sprayed Coatings: A Review
,”
Coatings
,
10
(
2
), p.
123
.10.3390/coatings10020123
15.
Li
,
J. F.
,
Agyakwa
,
P. A.
,
Johnson
,
C. M.
,
Zhang
,
D.
,
Hussain
,
T.
, and
McCartney
,
D. G.
,
2010
, “
Characterization and Solderability of Cold Sprayed Sn–Cu Coatings on Al and Cu Substrates
,”
Surf. Coat. Technol.
,
204
(
9–10
), pp.
1395
1404
.10.1016/j.surfcoat.2009.09.025
16.
Montgomery
,
D. C.
,
2017
,
Design and Analysis of Experiments
,
Wiley
, Hoboken, NJ, p.
752
.
17.
Yin
,
S.
,
Suo
,
X.
,
Su
,
J.
,
Guo
,
Z.
,
Liao
,
H.
, and
Wang
,
X.
,
2014
, “
Effects of Substrate Hardness and Spray Angle on the Deposition Behavior of Cold-Sprayed Ti Particles
,”
J. Therm. Spray Technol.
,
23
(
1–2
), pp.
76
83
.10.1007/s11666-013-0039-0
18.
Yin
,
S.
,
Wang
,
X.-F.
,
Li
,
W.-Y.
, and
Xu
,
B.-P.
,
2010
, “
Numerical Study on the Effect of Substrate Angle on Particle Impact Velocity and Normal Velocity Component in Cold Gas Dynamic Spraying Based on CFD
,”
J. Therm. Spray Technol.
,
19
(
6
), pp.
1155
1162
.10.1007/s11666-010-9510-3
You do not currently have access to this content.