Abstract

Since insulated gate bipolar transistor (IGBT) is a core component for power conversion in a power electronic system, guaranteeing the safety of IGBT becomes a crucial task for the maintenance of the power system. However, the mechanism of IGBT failure is a considerably complicated process related to the dynamic process, involving electric, thermal, and mechanical. Hence, understanding the behaviors of IGBT under multiphysics fields coupling plays an important role in the design and reliability studies of IGBT. In this paper, we review the multiphysics coupling effects, namely, electrical–thermal coupling, thermal–mechanical coupling, and mechanical–electrical coupling, inside IGBT modules. The basic principles of each coupling, coupling models, reliability analysis, as well as key issues and development trends are discussed in detail, respectively.

References

1.
Deng
,
E.
,
Zhao
,
Z.
,
Lin
,
Z.
,
Han
,
R.
, and
Huang
,
Y.
,
2018
, “
Influence of Temperature on the Pressure Distribution Within Press Pack IGBTs
,”
IEEE Trans. Power Electron.
,
33
(
7
), pp.
6048
6059
.10.1109/TPEL.2017.2749521
2.
Ji
,
B.
,
Pickert
,
V.
,
Cao
,
W. P.
, and
Xing
,
L.
,
2013
, “
Onboard Condition Monitoring of Solder Fatigue in IGBT Power Modules
,”
9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED)
, Valencia, Spain, Aug. 27–30, pp.
9
15
.10.1109/DEMPED.2013.6645690
3.
Ciappa
,
M.
,
2002
, “
Selected Failure Mechanisms of Modern Power Modules
,”
Microelectron. Reliab.
,
42
(
4–5
), pp.
653
667
.10.1016/S0026-2714(02)00042-2
4.
Baliga
,
B. J.
,
2001
, “
The Future of Power Semiconductor Device Technology
,”
Proc. IEEE
,
89
(
6
), pp.
822
832
.10.1109/5.931471
5.
Das
,
M. K.
,
Zhang
,
Q. J.
,
Callanan
,
R.
,
Capell
,
C.
,
Clayton
,
J.
,
Donofrio
,
M.
,
Haney
,
S. K.
, et al.,
2009
, “
A 13 kV 4H-SiC N-Channel IGBT With Low Rdiff,on and Fast Switching
,”
Materials Science Forum
,
Trans Tech Publications,
600, pp.
1183
1186
.10.4028/www.scientific.net/MSF.600-603.1183
6.
Zhihong
,
W.
,
Xiezu
,
S.
, and
Yuan
,
Z.
,
2018
, “
IGBT Junction and Coolant Temperature Estimation by Thermal Model
,”
Microelectron. Reliab.
,
87
, pp.
168
182
.10.1016/j.microrel.2018.06.018
7.
Huang
,
A. Q.
,
2019
, “
Power Semiconductor Devices for Smart Grid and Renewable Energy Systems
,” Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications, New York, July, pp.
85
152
.10.1002/9781119515661.ch2
8.
van Brunt
,
E.
,
Cheng
,
L.
,
O'Loughlin
,
M. J.
,
Richmond
,
J.
,
Pala
,
V.
,
Palmour
,
J. W.
,
Tipton
,
C. W.
, and
Scozzie
,
C.
,
2015
, “
27 kV, 20 A 4H-SiC n-IGBTs
,”
Materials Science Forum
,
Trans Tech Publications
,
Switzerland
, June,
821–823
, pp.
847
850
.10.4028/www.scientific.net/MSF.821-823.847
9.
Chung
,
H. S. H.
,
Wang
,
H.
,
Blaabjerg
,
F.
, and
Pecht
,
M.
, eds.,
2015
,
Reliability of Power Electronic Converter Systems
,
Institution of Engineering and Technology
,
Stevenage, UK
.
10.
Han
,
L.
,
Liang
,
L.
,
Kang
,
Y.
, and
Qiu
,
Y.
,
2021
, “
A Review of SiC IGBT: Models, Fabrications, Characteristics, and Applications
,”
IEEE Trans. Power Electron.
,
36
(
2
), pp.
2080
2093
.10.1109/TPEL.2020.3005940
11.
Li
,
Q.
,
Li
,
Y.-B.
,
Fu
,
H.-D.
,
Tu
,
C.-M.
,
Xiao
,
B.
,
Xiao
,
F.
,
Zhai
,
D.-Y.
, and
Lu
,
J.-W.
,
2023
, “
Review on Failure Mechanism and Methodologies of IGBT Bonding Wire
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
13
(
7
), pp.
1045
1057
.10.1109/TCPMT.2023.3297224
12.
Sheng
,
K.
,
Williams
,
B. W.
, and
Finney
,
S. J.
,
2000
, “
A Review of IGBT Models
,”
IEEE Trans. Power Electron.
,
15
(
6
), pp.
1250
1266
.10.1109/63.892840
13.
Sathik
,
M. H. M.
,
Pou
,
J.
,
Prasanth
,
S.
,
Muthu
,
V.
,
Simanjorang
,
R.
, and
Gupta
,
A. K.
,
2017
, “
Comparison of IGBT Junction Temperature Measurement and Estimation Methods-a Review
,”
Asian Conference on Energy, Power and Transportation Electrification (ACEPT)
, Singapore, Oct. 24–26, pp.
1
8
.10.1109/ACEPT.2017.8168600
14.
Hu
,
K.
,
Liu
,
Z.
,
Yang
,
Y.
,
Iannuzzo
,
F.
, and
Blaabjerg
,
F.
,
2020
, “
Ensuring a Reliable Operation of Two-Level IGBT-Based Power Converters: A Review of Monitoring and Fault-Tolerant Approaches
,”
IEEE Access
,
8
, pp.
89988
90022
.10.1109/ACCESS.2020.2994368
15.
Abuelnaga
,
A.
,
Narimani
,
M.
, and
Bahman
,
A. S.
,
2021
, “
A Review on IGBT Module Failure Modes and Lifetime Testing
,”
IEEE Access
,
9
, pp.
9643
9663
.10.1109/ACCESS.2021.3049738
16.
Zhang
,
Y.
,
Huang
,
X.
,
Hu
,
G.
,
Huang
,
T.
, and
Ruan
,
J.
,
2013
, “
Calculation of Temperature Rise in Dry-Type Air-Core Reactors Using Strong Coupling of Fluid-Temperature Field
,”
Res. J. Appl. Sci. Eng. Technol.
,
5
(
10
), pp.
2941
2945
.10.19026/rjaset.5.4603
17.
Luo
,
H.
,
Iannuzzo
,
F.
,
Baker
,
N.
,
Blaabjerg
,
F.
,
Li
,
W.
, and
He
,
X.
,
2020
, “
Study of Current Density Influence on Bond Wire Degradation Rate in SiC MOSFET Modules
,”
IEEE J. Emerging Sel. Top. Power Electron.
,
8
(
2
), pp.
1622
1632
.10.1109/JESTPE.2019.2920715
18.
Olver
,
P. J.
,
2014
,
Introduction to Partial Differential Equations
, Vol.
1
,
Springer
,
Cham, Switzerland
.10.1007/978-3-319-02099-0
19.
Pelleg
,
J.
,
2013
,
Mechanical Properties of Materials
, Vol.
190
,
Springer
,
Dordrecht, The Netherlands
.10.1007/978-94-007-4342-7
20.
Boley
,
B. A.
, and
Weiner
,
J. H.
,
2012
,
Theory of Thermal Stresses
,
Courier Corporation
, Dover Publications, Mineola, New York.
21.
Liu
,
L.
,
Yu
,
E.
, and
Zheng
,
R.
,
2022
, “
Electrical-Thermal-Mechanical Modeling and Analysis of Press-Pack IGBT for Flexible HVDC Converter Valve
,”
7th Asia Conference on Power and Electrical Engineering (ACPEE)
, Hangzhou, China, Apr. 15–17, pp.
1086
1090
.10.1109/ACPEE53904.2022.9784064
22.
Masana
,
F.
,
2001
, “
A New Approach to the Dynamic Thermal Modelling of Semiconductor Packages
,”
Microelectron. Reliab.
,
41
(
6
), pp.
901
912
.10.1016/S0026-2714(01)00013-0
23.
Ma
,
K.
,
He
,
N.
,
Liserre
,
M.
, and
Blaabjerg
,
F.
,
2016
, “
Frequency-Domain Thermal Modeling and Characterization of Power Semiconductor Devices
,”
IEEE Trans. Power Electron.
,
31
(
10
), pp.
7183
7193
.10.1109/TPEL.2015.2509506
24.
Skibinski
,
G. L.
, and
Sethares
,
W. A.
,
1991
, “
Thermal Parameter Estimation Using Recursive Identification
,”
IEEE Trans. Power Electron.
,
6
(
2
), pp.
228
239
.10.1109/63.76809
25.
Janicki
,
M.
, and
Napieralski
,
A.
,
2019
, “
Considerations on Electronic System Compact Thermal Models in the Form of RC Ladders
,”
IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM)
, Polyana, Ukraine, Feb. 26–Mar. 3, pp.
1
4
.10.1109/CADSM.2019.8779274
26.
Bahman
,
A. S.
,
Ma
,
K.
, and
Blaabjerg
,
F.
,
2018
, “
A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High-Power IGBT Modules
,”
IEEE Trans. Power Electron.
,
33
(
3
), pp.
2518
2530
.10.1109/TPEL.2017.2694548
27.
Wang
,
Z.
, and
Qiao
,
W.
,
2016
, “
A Physics-Based Improved Cauer-Type Thermal Equivalent Circuit for IGBT Modules
,”
IEEE Trans. Power Electron.
,
31
(
10
), pp.
6781
6786
.10.1109/TPEL.2016.2539208
28.
Oh
,
H.-S.
, and
El Nokali
,
M.
,
2001
, “
A New IGBT Behavioral Model
,”
Solid-State Electron.
,
45
(
12
), pp.
2069
2075
.10.1016/S0038-1101(01)00149-6
29.
Jing
,
L.
,
Du
,
M.
,
Wei
,
K.
, and
Hurley
,
W. G.
,
2020
, “
An Improved Behavior Model for IGBT Modules Driven by Datasheet and Measurement
,”
IEEE Trans. Electron Devices
,
67
(
1
), pp.
230
236
.10.1109/TED.2019.2954329
30.
Maxim
,
A.
, and
Maxim
,
G.
,
1999
, “
A Novel Analog Behavioral IGBT Spice Macromodel
,”
30th Annual IEEE Power Electronics Specialists Conference, Record
. (Cat. No. 99CH36321), Charleston, SC, July 1, Vol. 1, pp.
364
369
.10.1109/PESC.1999.789029
31.
Hefner
,
A. R.
, and
Diebolt
,
D. M.
,
1994
, “
An Experimentally Verified IGBT Model Implemented in the Saber Circuit Simulator
,”
IEEE Trans. Power Electron.
,
9
(
5
), pp.
532
542
.10.1109/63.321038
32.
Hefner
,
A. R.
,
1990
, “
Analytical Modeling of Device-Circuit Interactions for the Power Insulated Gate Bipolar Transistor (IGBT)
,”
IEEE Trans. Ind. Appl.
,
26
(
6
), pp.
995
1005
.10.1109/28.62382
33.
Chibante
,
R.
,
AraÚjo
,
A.
, and
Carvalho
,
A.
,
2009
, “
Finite-Element Modeling and Optimization-Based Parameter Extraction Algorithm for NPT-IGBTs
,”
IEEE Trans. Power Electron.
,
24
(
5
), pp.
1417
1427
.10.1109/TPEL.2009.2012388
34.
Kraus
,
R.
, and
Mattausch
,
H. J.
,
1998
, “
Status and Trends of Power Semiconductor Device Models for Circuit Simulation
,”
IEEE Trans. Power Electron.
,
13
(
3
), pp.
452
465
.10.1109/63.668107
35.
Ning
,
P.
,
Meng
,
J.
, and
Wen
,
X.
,
2015
, “
A Finite Differential Method Based IGBT Model in PSPICE
,”
IEEE Applied Power Electronics Conference and Exposition (APEC)
, Charlotte, NC, Mar. 15–19, pp.
1078
1083
.10.1109/APEC.2015.7104482
36.
Iannuzzo
,
F.
, and
Busatto
,
G.
,
2004
, “
Physical CAD Model for High-Voltage IGBTs Based on Lumped-Charge Approach
,”
IEEE Trans. Power Electron.
,
19
(
4
), pp.
885
893
.10.1109/TPEL.2004.830085
37.
Poller
,
T.
,
D'Arco
,
S.
,
Hernes
,
M.
,
Rygg Ardal
,
A.
, and
Lutz
,
J.
,
2013
, “
Influence of the Clamping Pressure on the Electrical, Thermal and Mechanical Behaviour of Press-Pack IGBTs
,”
Microelectron. Reliab.
,
53
(
9–11
), pp.
1755
1759
.10.1016/j.microrel.2013.07.130
38.
Poller
,
T.
,
Basler
,
T.
,
Hernes
,
M.
,
D'Arco
,
S.
, and
Lutz
,
J.
,
2012
, “
Mechanical Analysis of Press-Pack IGBTs
,”
Microelectron. Reliab.
,
52
(
9–10
), pp.
2397
2402
.10.1016/j.microrel.2012.06.079
39.
Varley
,
M.
,
Plumpton
,
A.
,
Simpson
,
R.
, and
Tonner
,
C.
,
2017
, “
Thermo-Mechanical Optimisation of Press-Pack IGBT Packaging Using Finite Element Method Simulation
,”
PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management
,
VDE
,
Nuremberg, Germany
, May 16–18, pp.
1
8
.https://ieeexplore.ieee.org/document/7990816
40.
Hasmasan
,
A.
,
Busca
,
C.
,
Teodorescu
,
R.
, and
Helle
,
L.
,
2012
, “
Modelling the Clamping Force Distribution Among Chips in Press-Pack IGBTs Using the Finite Element Method
,”
3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)
, Aalborg, Denmark, June 25–28, pp.
788
793
.10.1109/PEDG.2012.6254091
41.
Riccio
,
M.
,
Carli
,
M.
,
Rossi
,
L.
,
Irace
,
A.
,
Breglio
,
G.
, and
Spirito
,
P.
,
2010
, “
Compact Electro-Thermal Modeling and Simulation of Large Area Multicellular Trench-IGBT
,”
27th International Conference on Microelectronics Proceedings
, Nis, Serbia, May 16–19, pp.
379
382
.10.1109/MIEL.2010.5490459
42.
Batard
,
C.
,
Ginot
,
N.
, and
Antonios
,
J.
,
2015
, “
Lumped Dynamic Electrothermal Model of IGBT Module of Inverters
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
5
(
3
), pp.
355
364
.10.1109/TCPMT.2015.2392625
43.
Azzopardi
,
S.
,
Theolier
,
L.
,
Deletage
,
J. Y.
, and
Woirgard
,
E.
,
2012
, “
2D Finite Elements Electro-Thermal Modeling for IGBT: Uni and Multicellular Approach
,”
13th International Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
, Cascais, Portugal, Apr. 16–18, pp.
1
5
.10.1109/ESimE.2012.6191757
44.
Özkol
,
E.
,
Brem
,
F.
,
Liu
,
C.
,
Hartmann
,
S.
, and
Kopta
,
A.
,
2015
, “
Enhanced Power Cycling Performance of IGBT Modules With a Reinforced Emitter Contact
,”
Microelectron. Reliab.
,
55
(
6
), pp.
912
918
.10.1016/j.microrel.2015.03.013
45.
Wu
,
R.
,
Iannuzzo
,
F.
,
Wang
,
H.
, and
Blaabjerg
,
F.
,
2014
, “
An Icepak-PSpice Co-Simulation Method to Study the Impact of Bond Wires Fatigue on the Current and Temperature Distribution of IGBT Modules Under Short-Circuit
,”
IEEE Energy Conversion Congress and Exposition (ECCE)
, Pittsburgh, PA, Sept. 14–18, pp.
5502
5509
.10.1109/ECCE.2014.6954155
46.
Yingjie
,
J.
,
Fei
,
X.
,
Yifei
,
L.
,
Binli
,
L.
, and
Yongle
,
H.
,
2020
, “
Multi-Rate Electro-Thermal Simulation Method for High Power IGBT Based on Field-Circuit Coupling
,”
Trans. China Electrotech. Soc.
,
35
(
9
), pp.
1952
1961
.10.19595/j.cnki.1000-6753.tces.190350
47.
Wu
,
W.
,
Held
,
M.
,
Jacob
,
P.
,
Scacco
,
P.
, and
Birolini
,
A.
,
1995
, “
Thermal Stress Related Packaging Failure in Power IGBT Modules
,”
Proceedings of International Symposium on Power Semiconductor Devices and IC's: ISPSD'95
, Yokohama, Japan, May 23–25, pp.
330
334
.10.1109/ISPSD.1995.515059
48.
Zhao
,
W.
,
Wang
,
Y.
,
Li
,
M.
, and
Gao
,
L.
,
2014
, “
Effect of Al-0.5% Cu Thin Film on Reliability of IGBT Module
,”
15th International Conference on Electronic Packaging Technology
, Chengdu, China, Aug. 12–15, pp.
1021
1025
.10.1109/ICEPT.2014.6922820
49.
Rajaguru
,
P.
,
Lu
,
H.
,
Bailey
,
C.
,
Ortiz-Gonzalez
,
J.
, and
Alatise
,
O.
,
2015
, “
Electro-Thermo-Mechanical Modelling and Analysis of the Press Pack Diode in Power Electronics
,” 21st International Workshop on Thermal Investigations of ICs and Systems (
THERMINIC
), Paris, France, Sept. 30–Oct. 2, pp.
1
6
.10.1109/THERMINIC.2015.7389607
50.
Busca
,
C.
,
Teodorescu
,
R.
,
Blaabjerg
,
F.
,
Helle
,
L.
, and
Abeyasekera
,
T.
,
2013
, “
Dynamic Thermal Modelling and Analysis of Press-Pack IGBTs Both at Component-Level and Chip-Level
,”
IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society
, Vienna, Austria, Nov. 10–13, pp.
677
682
.10.1109/IECON.2013.6699216
51.
Hasmasan
,
A. A.
,
Busca
,
C.
,
Teodorescu
,
R.
,
Helle
,
L.
, and
Blaabjerg
,
F.
,
2014
, “
Electro-Thermo-Mechanical Analysis of High-Power Press-Pack Insulated Gate Bipolar Transistors Under Various Mechanical Clamping Conditions
,”
IEEJ J. Ind. Appl.
,
3
(
3
), pp.
192
197
.10.1541/ieejjia.3.192
52.
Dai
,
S.
,
Liu
,
Z.
,
Wang
,
Z.
,
Zhao
,
Y.
, and
Li
,
G.
,
2022
, “
Study of Electrical Contacts Fatigue and Degradation Evaluation for Press-Pack IEGT Under Power Cycling Tests
,”
IEEE J. Emerging Sel. Top. Power Electron.
,
10
(
5
), pp.
5168
5180
.10.1109/JESTPE.2021.3101036
53.
An
,
T.
,
Li
,
Z.
,
Zhang
,
Y.
,
Qin
,
F.
,
Wang
,
L.
,
Lin
,
Z.
,
Tang
,
X.
,
Dai
,
Y.
,
Gong
,
Y.
, and
Chen
,
P.
,
2022
, “
The Effect of the Surface Roughness Characteristics of the Contact Interface on the Thermal Contact Resistance of the PP-IGBT Module
,”
IEEE Trans. Power Electron.
,
37
(
6
), pp.
7286
7298
.10.1109/TPEL.2021.3134175
54.
Zhan
,
C.
,
Zhu
,
L.
,
Dai
,
J.
,
Zhang
,
Y.
,
Liu
,
J.
,
Liu
,
Z.
,
Liu
,
C.
, and
Ji
,
S.
,
2022
, “
Wear-Out Mechanism of Press-Pack IGBTs Under Accelerated Aging Test
,”
IEEE J. Emerging Sel. Top. Power Electron.
,
10
(
5
), pp.
5132
5141
.10.1109/JESTPE.2021.3085590
55.
Jiang
,
M.
,
Fu
,
G.
,
Leng
,
H.
,
Wan
,
B.
, and
Cheng
,
Y.
,
2018
, “
Method to Predict Lifetime of IGBT Under Power Cycling Based-on Fast Electro-Thermo-Mechanical Model
,” 19th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (
EuroSimE
), Toulouse, France, Apr. 15–18, pp. 1–6.10.1109/EuroSimE.2018.8369921
56.
Wu
,
R.
,
Iannuzzo
,
F.
,
Wang
,
H.
, and
Blaabjerg
,
F.
,
2014
, “
Fast and Accurate Icepak-PSpice Co-Simulation of IGBTs Under Short-Circuit With an Advanced PSpice Model
,” 7th IET International Conference on Power Electronics, Machines and Drives (
PEMD 2014
),
IET
, Manchester, UK, Apr. 8–10, pp.
1
5
.10.1049/cp.2014.0466
57.
Jia
,
Y.
,
Xiao
,
F.
,
Duan
,
Y.
,
Luo
,
Y.
,
Liu
,
B.
, and
Huang
,
Y.
,
2020
, “
PSpice-COMSOL-Based 3-D Electrothermal–Mechanical Modeling of IGBT Power Module
,”
IEEE J. Emerging Sel. Top. Power Electron.
,
8
(
4
), pp.
4173
4185
.10.1109/JESTPE.2019.2935037
58.
Yao
,
R.
,
Li
,
H.
,
Duan
,
Z.
,
Lai
,
W.
,
Chen
,
Z.
, and
Li
,
Y.
,
2022
, “
Multi Physical Modeling for the Press-Pack IGBT Device by Considering Material Temperature Effect
,” IEEE International Power Electronics and Application Conference and Exposition (
PEAC
), Guangzhou, Guangdong, China, Nov. 4–7, pp.
866
871
.10.1109/PEAC56338.2022.9959331
59.
Jianbo
,
Z.
,
Yigang
,
H.
,
Jiacheng
,
L.
,
Weibo
,
Y.
,
Huadong
,
N.
, and
Zhangsheng
,
P.
,
2019
, “
Improved IGBT Dynamic Model and Electro-Thermal-Mechanical Multi-Field Coupling Failure Analysis
,” IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (
PEDG
),
IEEE
, Xi'an, China, June 3–6, pp.
827
832
.10.1109/PEDG.2019.8807606
60.
Lai
,
W.
,
Li
,
H.
,
Chen
,
M.
,
Kang
,
S.
,
Ren
,
H.
,
Yao
,
R.
,
Pan
,
L.
, and
Jin
,
R.
,
2019
, “
Investigation on the Effects of Unbalanced Clamping Force on Multichip Press Pack IGBT Modules
,”
IEEE J. Emerging Sel. Top. Power Electron.
,
7
(
4
), pp.
2314
2322
.10.1109/JESTPE.2018.2876768
61.
Takahashi
,
T.
, and
Yu
,
Q.
,
2010
, “
Precision Evaluation for Thermal Fatigue Life of Power Module Using Coupled Electrical-Thermal-Mechanical Analysis
,”
12th Electronics Packaging Technology Conference
, Singapore, Dec. 8–10, pp.
201
205
.10.1109/EPTC.2010.5702634
62.
Hamidi
,
A.
,
Kaufmann
,
S.
, and
Herr
,
E.
,
2001
, “
Increased Lifetime of Wire Bonding Connections for IGBT Power Modules
,”
APEC 2001. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition, in (Cat. No. 01CH37181)
, Anaheim, CA, Mar. 4–8, Vol. 2, pp.
1040
1044
.10.1109/APEC.2001.912494
63.
Zhang
,
Q.
,
Ma
,
M.
,
Guo
,
W.
,
Li
,
F.
, and
Wang
,
H.
,
2023
, “
An Improved Cauer Model of IGBT Module Considering Chip Solder Degradation
,” IEEE 14th International Symposium on Power Electronics for Distributed Generation Systems (
PEDG
), Shanghai, China, June 9–12, pp.
726
731
.10.1109/PEDG56097.2023.10215178
64.
Tu
,
C.
,
Xu
,
H.
,
Xiao
,
B.
,
Lu
,
J.
,
Guo
,
Q.
, and
Long
,
L.
,
2022
, “
Research on the Influence of Bond Wire Lift-Off Position on the Electro-Thermal Characteristics of IGBT
,”
IEEE Trans. Electron Devices
,
69
(
3
), pp.
1271
1278
.10.1109/TED.2022.3140689
65.
Fu
,
H.
,
Li
,
Y.
,
Li
,
Q.
,
Tu
,
C.
,
Xiao
,
B.
,
Xiao
,
F.
,
Liu
,
P.
,
Gao
,
B.
, and
Lu
,
J.
,
2022
, “
Failure Mechanism Analysis of Bond Wire of High Power IGBT Under Different Load Current
,” IEEE 5th International Electrical and Energy Conference (
CIEEC
), Nangjing, China, May 27–29, pp.
798
803
.10.1109/CIEEC54735.2022.9846435
66.
Hu
,
Z.
,
Du
,
M.
,
Wei
,
K.
, and
Hurley
,
W. G.
,
2019
, “
An Adaptive Thermal Equivalent Circuit Model for Estimating the Junction Temperature of IGBTs
,”
IEEE J. Emerging Sel. Top. Power Electron.
,
7
(
1
), pp.
392
403
.10.1109/JESTPE.2018.2796624
67.
Baker
,
N.
,
Munk-Nielsen
,
S.
,
Iannuzzo
,
F.
, and
Liserre
,
M.
,
2016
, “
IGBT Junction Temperature Measurement Via Peak Gate Current
,”
IEEE Trans. Power Electron.
,
31
(
5
), pp.
3784
3793
.10.1109/TPEL.2015.2464714
68.
Motto
,
E. R.
, and
Donlon
,
J. F.
,
2012
, “
IGBT Module With User Accessible on-Chip Current and Temperature Sensors
,” Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (
APEC
), Orlando, FL, Feb. 5–9, pp.
176
181
.10.1109/APEC.2012.6165816
69.
Dupont
,
L.
,
Avenas
,
Y.
, and
Jeannin
,
P.-O.
,
2013
, “
Comparison of Junction Temperature Evaluations in a Power IGBT Module Using an IR Camera and Three Thermosensitive Electrical Parameters
,”
IEEE Trans. Ind. Appl.
,
49
(
4
), pp.
1599
1608
.10.1109/TIA.2013.2255852
70.
Cui
,
H.
,
Zhou
,
M.
,
Yang
,
C.
,
Li
,
J.
, and
Wang
,
C.
,
2022
, “
Influence Mechanism of Solder Aging and Thermal Network Model Optimization of Multi-Chip IGBT Modules
,”
Microelectron. Reliab.
,
139
, p.
114827
.10.1016/j.microrel.2022.114827
71.
Zhou
,
R.
,
An
,
T.
,
Qin
,
F.
,
Gong
,
Y.
,
Dai
,
Y.
, and
Chen
,
P.
,
2022
, “
Influence of Chip Layout on Temperature Distribution of Multi-Chip Press Pack IGBT Devices
,” 23rd International Conference on Electronic Packaging Technology (
ICEPT
), Dalian, China, Aug. 10–13, pp.
1
4
.10.1109/ICEPT56209.2022.9873141
72.
Shi
,
Y.
,
Liu
,
J.
,
Ai
,
Y.
,
Chen
,
S.
, and
Bai
,
Y.
,
2023
, “
Dynamic IGBT Three-Dimensional Thermal Network Model Considering Base Solder Degradation and Thermal Coupling Between IGBT Chips
,”
IEEE Trans. Transp. Electrif.
,
9
(
2
), pp.
2994
3011
.10.1109/TTE.2022.3228440
73.
An
,
N.
,
Du
,
M.
,
Hu
,
Z.
, and
Wei
,
K.
,
2018
, “
A High-Precision Adaptive Thermal Network Model for Monitoring of Temperature Variations in Insulated Gate Bipolar Transistor (IGBT) Modules
,”
Energies
,
11
(
3
), p.
595
.10.3390/en11030595
74.
Ahsan
,
M.
,
Hon
,
S. T.
,
Batunlu
,
C.
, and
Albarbar
,
A.
,
2020
, “
Reliability Assessment of IGBT Through Modelling and Experimental Testing
,”
IEEE Access
,
8
, pp.
39561
39573
.10.1109/ACCESS.2020.2973578
75.
Shahjalal
,
M.
,
Ahmed
,
M. R.
,
Lu
,
H.
,
Bailey
,
C.
, and
Forsyth
,
A. J.
,
2020
, “
An Analysis of the Thermal Interaction Between Components in Power Converter Applications
,”
IEEE Trans. Power Electron.
,
35
(
9
), pp.
9082
9094
.10.1109/TPEL.2020.2969350
76.
Dudek
,
R.
,
Otto
,
A.
,
Döring
,
R.
,
Mathew
,
A.
,
Liu
,
X.
, and
Rzepka
,
S.
,
2023
, “
Failure Prediction and Analysis of an IGBT Module for Industrial Applications Subjected to Passive and Power Cycling
,” 24th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (
EuroSimE
), Graz, Austria, Apr. 16–19, pp.
1
11
.10.1109/EuroSimE56861.2023.10100806
77.
Wang
,
Y.
,
Ding
,
Y.
, and
Yin
,
Y.
,
2022
, “
Reliability of Wide Band Gap Power Electronic Semiconductor and Packaging: A Review
,”
Energies
,
15
(
18
), p.
6670
.10.3390/en15186670
78.
Qin
,
Y.
,
Albano
,
B.
,
Spencer
,
J.
,
Lundh
,
J. S.
,
Wang
,
B.
,
Buttay
,
C.
,
Tadjer
,
M.
,
DiMarino
,
C.
, and
Zhang
,
Y.
,
2023
, “
Thermal Management and Packaging of Wide and Ultra‐Wide Bandgap Power Devices: A Review and Perspective
,”
J. Phys. D: Appl. Phys.
,
56
(
9
), p.
093001
.10.1088/1361-6463/acb4ff
79.
Kong
,
F.-Z.
,
Yin
,
W.-Y.
,
Mao
,
J.-F.
, and
Liu
,
Q. H.
,
2010
, “
Electro-Thermo-Mechanical Characterizations of Various Wire Bonding Interconnects Illuminated by an Electromagnetic Pulse
,”
IEEE Trans. Adv. Packag.
,
33
(
3
), pp.
729
737
.10.1109/TADVP.2010.2048902
80.
Hirohata
,
K.
,
Hisano
,
K.
,
Mukai
,
M.
,
Aoki
,
H.
,
Takubo
,
C.
,
Kawakami
,
T.
, and
Pecht
,
M. G.
,
2010
, “
Coupled Thermal-Stress Analysis for FC-BGA Packaging Reliability Design
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
2
), pp.
347
358
.10.1109/TCAPT.2009.2037215
81.
Choi
,
U.-M.
,
Blaabjerg
,
F.
, and
Lee
,
K.-B.
,
2015
, “
Study and Handling Methods of Power IGBT Module Failures in Power Electronic Converter Systems
,”
IEEE Trans. Power Electron.
,
30
(
5
), pp.
2517
2533
.10.1109/TPEL.2014.2373390
82.
Rajaguru
,
P.
,
Ortiz-Gonzalez
,
J. A.
,
Lu
,
H.
,
Bailey
,
C.
, and
Alatise
,
O.
,
2017
, “
A Multiphysics Modeling and Experimental Analysis of Pressure Contacts in Power Electronics Applications
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
7
(
6
), pp.
893
900
.10.1109/TCPMT.2017.2688021
83.
Ren
,
H.
,
Hao
,
G.
,
Shao
,
W.
,
Ran
,
L.
,
Zhou
,
L.
,
Mawby
,
P.
, and
Jiang
,
H.
,
2019
, “
Thermal Buffering Effect of Phase Change Material on Press-Pack IGBT During Power Pulse
,” IEEE Energy Conversion Congress and Exposition (
ECCE
), Baltimore, MD, Sept. 29–Oct. 3, pp.
4937
4943
.10.1109/ECCE.2019.8912473
84.
Rajaguru
,
P.
,
Lu
,
H.
,
Bailey
,
C.
,
Castellazzi
,
A.
,
Pathirana
,
V.
,
Udugampola
,
N.
, and
Udrea
,
F.
,
2018
, “
Impact of Underfill and Other Physical Dimensions on Silicon Lateral IGBT Package Reliability Using Computer Model With Discrete and Continuous Design Variables
,”
Microelectron. Reliab.
,
83
, pp.
146
156
.10.1016/j.microrel.2018.02.024
85.
Lei
,
Q.
,
Luchun
,
D.
,
Xiangyu
,
Z.
,
Wuyu
,
Z.
, and
Hong
,
S.
,
2023
, “
Online Correction Method of IGBT Lifetime Evaluation Based on Bonding Wire Failure Monitoring
,”
IET Power Electron.
,
16
(
3
), pp.
347
356
.10.1049/pel2.12387
86.
Baliga
,
B. J.
,
1993
, “
Power Semiconductor Devices for the 1990s
,”
Microelectron. J.
,
24
(
1–2
), pp.
31
39
.10.1016/0026-2692(93)90099-Z
87.
Held
,
M.
,
Jacob
,
P.
,
Nicoletti
,
G.
,
Scacco
,
P.
, and
Poech
,
M. H.
,
1997
, “
Fast Power Cycling Test of IGBT Modules in Traction Application
,”
Proceedings of Second International Conference on Power Electronics and Drive Systems
, Singapore, May 26–29, Vol. 1, pp.
425
430
.10.1109/PEDS.1997.618742
88.
Bayerer
,
R.
,
Herrmann
,
T.
,
Licht
,
T.
,
Lutz
,
J.
, and
Feller
,
M.
,
2008
, “
Model for Power Cycling Lifetime of IGBT Modules-Various Factors Influencing Lifetime
,”
5th International Conference on Integrated Power Electronics Systems, VDE
, Nuremberg, Germany, Mar. 11–13, pp.
1
6
.https://ieeexplore.ieee.org/document/5755669
89.
Kovačević
,
I.
,
Drofenik
,
U.
, and
Kolar
,
J. W.
,
2010
, “
New Physical Model for Lifetime Estimation of Power Modules
,”
The 2010 International Power Electronics Conference-ECCE ASIA
, Sapporo, Japan, June 21–24, pp.
2106
2114
.10.1109/IPEC.2010.5543755
90.
Pedersen
,
K. B.
, and
Pedersen
,
K.
,
2012
, “
Bond Wire Lift-Off in IGBT Modules Due to Thermomechanical Induced Stress
,” 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (
PEDG
), Aalborg, Denmark, June 25–28, pp.
519
526
.10.1109/PEDG.2012.6254052
91.
Yang
,
L.
,
Agyakwa
,
P. A.
, and
Johnson
,
C. M.
,
2013
, “
Physics-of-Failure Lifetime Prediction Models for Wire Bond Interconnects in Power Electronic Modules
,”
IEEE Trans. Device Mater. Reliab.
,
13
(
1
), pp.
9
17
.10.1109/TDMR.2012.2235836
92.
Steinhorst
,
P.
,
Poller
,
T.
, and
Lutz
,
J.
,
2013
, “
Approach of a Physically Based Lifetime Model for Solder Layers in Power Modules
,”
Microelectron. Reliab.
,
53
(
9–11
), pp.
1199
1202
.10.1016/j.microrel.2013.07.094
93.
Huang
,
Q.
,
Peng
,
C.
,
Wang
,
L.
, and
Zhu
,
W.
,
2020
, “
Effects of Current and Bonding Wires Damage on High-Power IGBT Module Reliability by Electro-Thermo-Mechanical Simulation
,” 21st International Conference on Electronic Packaging Technology (
ICEPT
), Guangzhou, China, Aug. 12–15, pp.
1
4
.10.1109/ICEPT50128.2020.9202868
94.
Pierquin
,
A.
,
Henneron
,
T.
, and
Clenet
,
S.
,
2018
, “
Data-Driven Model-Order Reduction for Magnetostatic Problem Coupled With Circuit Equations
,”
IEEE Trans. Magn.
,
54
(
3
), pp.
1
4
.10.1109/TMAG.2017.2771358
95.
Szypulski
,
D.
,
Fotyga
,
G.
,
de la Rubia
,
V.
, and
Mrozowski
,
M.
,
2020
, “
A Subspace-Splitting Moment-Matching Model-Order Reduction Technique for Fast Wideband FEM Simulations of Microwave Structures
,”
IEEE Trans. Microwave Theory Tech.
,
68
(
8
), pp.
3229
3241
.10.1109/TMTT.2020.3001627
96.
Henneron
,
T.
, and
Clenet
,
S.
,
2014
, “
Model Order Reduction of Non-Linear Magnetostatic Problems Based on POD and DEI Methods
,”
IEEE Trans. Magn.
,
50
(
2
), pp.
33
36
.10.1109/TMAG.2013.2283141
97.
Monteiro
,
E.
,
Yvonnet
,
J.
, and
He
,
Q.-C.
,
2008
, “
Computational Homogenization for Nonlinear Conduction in Heterogeneous Materials Using Model Reduction
,”
Comput. Mater. Sci.
,
42
(
4
), pp.
704
712
.10.1016/j.commatsci.2007.11.001
98.
Fotyga
,
G.
,
Czarniewska
,
M.
,
Lamecki
,
A.
, and
Mrozowski
,
M.
,
2018
, “
Reliable Greedy Multipoint Model-Order Reduction Techniques for Finite-Element Analysis
,”
IEEE Antennas Wireless Propag. Lett.
,
17
(
5
), pp.
821
824
.10.1109/LAWP.2018.2817391
99.
Karve
,
P. M.
,
Guo
,
Y.
,
Kapusuzoglu
,
B.
,
Mahadevan
,
S.
, and
Haile
,
M. A.
,
2020
, “
Digital Twin Approach for Damage-Tolerant Mission Planning Under Uncertainty
,”
Eng. Fract. Mech.
,
225
, p.
106766
.10.1016/j.engfracmech.2019.106766
100.
Gates
,
T.
,
Odegard
,
G.
,
Frankland
,
S.
, and
Clancy
,
T.
,
2005
, “
Computational Materials: Multi-Scale Modeling and Simulation of Nanostructured Materials
,”
Compos. Sci. Technol.
,
65
(
15–16
), pp.
2416
2434
.10.1016/j.compscitech.2005.06.009
101.
You do not currently have access to this content.