Abstract

Modern electronics reliability prediction models require materials-specific failure data across a range of conditions. Garofalo models are preferred due to their ability to accurately predict performance over a wide temperature range. However, data on intermediate solders are sparse, especially regarding performance at cold temperatures. We report Garofalo creep data for 83Pb/10Sb/5Sn/2Ag (Indalloy 236) and 91.5Sn/8.5Sb (Indalloy 264). Indalloy 236 exhibits an activation energy of 54.5 kJ/mol, n = 4.5, and α = 0.043 while Indalloy 264 exhibits an activation energy of 70.04 kJ/mol, n = 2.705, and α = 0.099 from −20 °C to 175 °C. We show that modern curve-fitting analysis should be utilized for Garofalo analysis rather than traditional linearization methods. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were used to characterize the changes in the alloy phases during testing. Microstructural analysis indicates that Indalloy 236 can experience void coalescence at high temperatures while Indalloy 264 precipitates antimony-rich phases on the grain boundaries.

References

1.
Humpston
,
G.
, and
Jacobson
,
D. M.
,
2005
, “
Indium Solders
,”
Adv. Mater. Process.
,
4
, pp.
45
47
.https://psec.uchicago.edu/Documents/indium_solders_amp16304p045.pdf
2.
Esashi
,
M.
,
2008
, “
Wafer Level Packaging of MEMS
,”
J. Micromech. Microeng.
,
18
(
7
), p.
073001
.10.1088/0960-1317/18/7/073001
3.
Chidambaram
,
V.
,
Hattel
,
J.
, and
Hald
,
J.
,
2011
, “
High-Temperature Lead-Free Solder Alternatives
,”
Microelectron. Eng.
,
88
(
6
), pp.
981
989
.10.1016/j.mee.2010.12.072
4.
Frear
,
D. R.
,
Jang
,
J. W.
,
Lin
,
J. K.
, and
Zhang
,
C.
,
2001
, “
Pb-Free Solders for Flip-Chip Interconnects
,”
JOM
,
53
(
6
), pp.
28
33
.10.1007/s11837-001-0099-3
5.
Pang
,
J. H. L.
,
2012
,
Lead Free Solder: Mechanics and Reliability
,
Springer
,
New York
.
6.
Ora
,
A.
,
Kumar
,
D.
, and
Darade
,
N.
,
2017
, “
Failure Mode Effect Analysis With Pareto Chart for Various Critical Equipment Used in Ceramic Industry
,”
Int. J. Eng. Sci. Comput.
,
7
(
4
), pp.
10168
10173
.https://www.scribd.com/document/440359315/Failure-Mode-Effect-Analysis-With-Pareto-Chart-for-Various-Critical-Equipment-Used-in-Ceramic-Industry
7.
Lee
,
W. W.
,
Nguyen
,
L. T.
, and
Selvaduray
,
G. S.
,
2000
, “
Solder Joint Fatigue Models: Review and Applicability to Chip Scale Packages
,”
Microelectron. Reliab.
,
40
(
2
), pp.
231
244
.10.1016/S0026-2714(99)00061-X
8.
Joo
,
D.
,
Yu
,
J.
, and
Shin
,
S.
,
2003
, “
Creep Rupture of Lead-Free Sn-3.5Ag-Cu Solders
,”
J. Electron. Mater.
,
32
(
6
), pp.
541
547
.10.1007/s11664-003-0140-0
9.
Lin
,
C.-K.
, and
Chu
,
D.-Y.
,
2005
, “
Creep Rupture of Lead-Free Sn-3.5Ag and Sn-3.5Ag-0.5Cu Solders
,”
J. Mater. Sci.: Mater. Electron.
,
16
(
6
), pp.
355
365
.10.1007/s10854-005-1147-5
10.
McCabe
,
R. J.
, and
Fine
,
M. E.
,
2002
, “
Creep of Tin, Sb-Solution-Strengthened Tin, and Sb-Sn Precipitate Strengthened Tin
,”
Metall. Mater. Trans. A
,
33
(
5
), pp.
1531
1539
.10.1007/s11661-002-0075-8
11.
Beshai
,
M. H. N.
,
Habib
,
S. K.
,
Yassein
,
A. M.
,
Saad
,
G.
, and
Hasab El-Naby
,
M. M.
,
1999
, “
Effect of SnSb Particle Size on Creep Behaviour Under Power Law Regime of Sn-10%Sb Alloy
,”
Crystal Res. Technol.
,
34
(
1
), pp.
119
126
.10.1002/(SICI)1521-4079(199901)34:1<119::AID-CRAT119>3.0.CO;2-1
12.
El-Daly
,
A. A.
,
Swilem
,
Y.
, and
Hammad
,
A. E.
,
2009
, “
Creep Properties of Sn-Sb Based Lead-Free Solder Alloys
,”
J. Alloys Compd.
,
471
(
1–2
), pp.
98
104
.10.1016/j.jallcom.2008.03.097
13.
Zhang
,
L.
,
Xue
,
S-B.
,
Gao
,
L-L.
,
Zeng
,
G.
,
Chen
,
Y.
,
Yu
,
S-L.
, and
Sheng
,
Z.
,
2010
, “
Creep Behavior of SnAgCu Solders With Rare Earth Ce Doping
,”
Trans. Nonferrous Met. Soc. China
,
20
(
3
), pp.
412
417
.10.1016/S1003-6326(09)60155-2
14.
Reed-Hill
,
E.
, and
Abbaschian
,
R.
,
1992
,
Physical Metallurgy Principles
, 3rd ed.,
PWSKent Publishing Company
,
Boston
.
15.
Pernis
,
R.
,
2017
, “
Simple Methodology for Calculating the Constants of Garofalo Equation
,”
Acta Metall. Slovaca
,
23
(
4
), pp.
319
329
.10.12776/ams.v23i4.1017
16.
Zhang
,
G. S.
,
Jing
,
H. Y.
,
Xu
,
L. Y.
,
Wei
,
J.
, and
Han
,
Y. D.
,
2009
, “
Creep Behavior of Eutectic 80/Au/20Sn Solder Alloy
,”
J. Alloys Compd.
,
476
(
1–2
), pp.
138
141
.10.1016/j.jallcom.2008.09.009
17.
Zhang
,
Q.
,
Dasgupta
,
A.
, and
Haswell
,
P.
,
2003
, “
Viscoplastic Constitutive Properties and Energy Partitioning Model of Lead-Free Sn3.9Ag0.6Cu Solder Alloy
,”
53rd Electronic Components and Technology Conference, 2003. Proceedings
, New Orleans, LA, May 27–30, pp.
1862
1868
.10.1109/ECTC.2003.1216558
18.
Pang
,
J. H. L.
,
Xiong
,
B.
, and
Low
,
T.
,
2004
, “
Creep and Fatigue Characterization of Lead Free 95.5Sn3.8Ag-0.7Cu Solder
,”
2004 Proceedings. 54th Electronic Components and Technology Conference
, Las Vegas, NV, June 4, pp.
1333
1337
.10.1109/ECTC.2004.1320285
19.
Schubert
,
A.
,
Dudek
,
R.
,
Auerswald
,
E.
,
Gollbardt
,
A.
,
Michel
,
B.
, and
Reichl
,
H.
,
2003
, “
Fatigue Life Models for SnAgCu and SnPb Solder Joints Evaluated by Experiments and Simulation
,”
Proceedings of the 53rd Electronic Components & Technology Conference
, New Orleans, LA, May 27–30, pp.
603
610
.10.1109/ECTC.2003.1216343
20.
Lau
,
J. H.
, and
Lee
,
S.-W. R.
,
2002
, “
Modeling and Analysis of 96.5Sn–3.5Ag Lead-Free Solder Joints of Wafer Level Chip Scale Package on Buildup Microvia Printed Circuit Board
,”
IEEE Trans. Electron. Packag. Manuf.
,
25
(
1
), pp.
51
58
.10.1109/TEPM.2002.1000483
21.
Mahmudi
,
A.
,
Geranmayeh
,
A. R.
, and
Rezaee-Bazzaz
,
A.
,
2007
, “
Impression Creep Behavior of Leadfree Sn-5Sb Solder Alloy
,”
Mater. Sci. Eng. A
,
448
(
1–2
), pp.
287
293
.10.1016/j.msea.2006.10.092
22.
Takagi
,
H.
,
Dao
,
M.
, and
Fujiwara
,
M.
,
2014
, “
Prediction of the Constitutive Equation for Uniaxial Creep of a Power Law Material Through Intrumented Microindentation Testing and Modeling
,”
Mater. Trans.
,
55
(
2
), pp.
275
284
.10.2320/matertrans.M2013370
23.
Shen
,
L.
,
Wu
,
Y.
,
Wang
,
S.
, and
Chen
,
Z.
,
2017
, “
Creep Behavior of Sn-Bi Solder Alloys at Elevated Temperatures Studied by Nanoindentation
,”
J. Mater. Sci., Mater. Electron.
,
28
(
5
), pp.
4114
4124
.10.1007/s10854-016-6031-y
24.
Shen
,
L.
,
Cheong
,
W. C. D.
,
Foo
,
Y. L.
, and
Chen
,
Z.
,
2012
, “
Nanoindentation Creep of Tin and Aluminum: A Comparative Study Between Constant Load and Constant Strain Rate Methods
,”
Mater. Sci. Eng. A
,
532
, pp.
505
510
.10.1016/j.msea.2011.11.016
25.
Stang
,
E.
,
2012
, “
Constitutive Modeling of Creep in Leaded and Lead-Free Solder Alloys Using Constant Strain-Rate Testing
,”
M.S. thesis
,
Wright State University
, Dayton, OH.https://corescholar.libraries.wright.edu/etd_all/2238/
26.
Rogers
,
R. R.
, and
Fydell
,
J. F.
,
1953
, “
Factors Affecting the Transformation to Gray Tin at Low Temperatures
,”
J. Electrochem. Soc.
,
100
(
9
), pp.
383
387
.10.1149/1.2781136
27.
Okamoto, H.,
2012
, “Sn-Sn (Antimony-Tin) Supplemental Literature Review,”
J. Phase Equilib. Diffus.
,
33
(
4
), p.
347
.10.1007/s11669-012-0054-8
28.
Franke
,
P.
, and
Neuschütz
,
D.
,
2006
,
Thermodynamic Properties of Inorganic Materials Compiled by SGTE
, Vol.
19B4
,
Springer Berlin
,
Berlin
.
You do not currently have access to this content.