Abstract

Delamination failure is one of the most prevalent and serious reliability issues in micro-electronic packaging. To understand this phenomenon further, this study constructs an experimental test system consisting of a double cantilever beam (DCB) fixture, an MTS-Acumen microforce tester, and a temperature and humidity controller. The system is employed to investigate the effects of coupled moisture-thermal loading on the critical strain energy release rate (SERR) at the epoxy molding compound (EMC)/Cu leadframe (LF) interface of a very thin quad flat no-lead package (WQFN) assembly. A three-dimensional computational model with hygro-thermal loading conditions is developed to evaluate the moisture diffusion, thermal stress, and integrated stress of a multichip WQFN package under typical processing conditions and precondition tests. The validated simulation model is then applied with the virtual crack closure technique (VCCT) to investigate the fracture behavior at the EMC/Cu LF interface in the WQFN package. The effects of three design parameters on the SERR performance of the package are identified through a parametric analysis. Finally, a Genetic Algorithm (GA) optimization method is employed to examine the effects of the main structural design parameters of the WQFN package on its delamination reliability. The results are used to determine the optimal packaging design that minimizes the SERR and hence enhances the package reliability.

References

1.
Utsunomiiya
,
H. H.
,
2015
, “
Latest Technology Trends on 2.1D 2.5D IC Integration
,”
J. Jpn. Inst. Electron. Packaging
,
18
(
3
), pp.
137
142
.10.5104/jiep.18.137
2.
Lin
,
W.-C.
, and
Huang
,
Y.-L.
,
2020
, “
Bidens-Inspired Anchor-Locking Microstructure for Improving the Reliability of Advanced Quad Flat No-Lead Packages
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
10
(
4
), pp.
559
567
.10.1109/TCPMT.2019.2954284
3.
Tsai
,
M.-Y.
,
Wang
,
Y.-W.
, and
Liu
,
C.-M.
,
2021
, “
Thermally-Induced Deformations and Warpages of Flip-Chip and 2.5D IC Packages Measured by Strain Gauges
,”
Materials
,
14
(
13
), p.
3723
.10.3390/ma14133723
4.
Shih
,
M.-K. S.
,
Shih
,
S.
,
Liao
,
T.-W.
,
Chen
,
D.-L.
,
Liu
,
D. S.
, and
Tarng
,
D.
,
2022
, “
Investigation Into Thermo-Mechanical Reliability of Copper Trace Lines in Stacked Dies Ball Grid Array Packaging
,”
Microelectron. Reliab.
,
130
, p.
114488
.10.1016/j.microrel.2022.114488
5.
Lee
,
C.-C.
,
Wang
,
C.-W.
, and
Chen
,
C.-Y.
,
2022
, “
Comparison of Mechanical Modeling to Warpage Estimation of RDL-First Fan-Out Panel-Level Packaging
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
12
(
7
), pp.
1100
1108
.10.1109/TCPMT.2022.3175953
6.
Fan
,
X. J.
, and
Suhir
,
E.
,
2010
,
Moisture Sensitivity of Plastic Packages of IC Devices
,
Springer,
New York.
7.
Liu
,
Y.
,
2012
,
Power Electronic Packaging: Design, Assembly Process, Reliability, and Modeling
,
Springer
, New York.
8.
Wong
,
E. H.
, and
Park
,
S. B.
,
2016
, “
Moisture Diffusion Modeling–a Critical Review
,”
Microelectron. Reliab.
,
65
, pp.
318
326
.10.1016/j.microrel.2016.08.009
9.
Chiu
,
T.-C.
,
Wu
,
J.-Y.
,
Liu
,
W.-T.
,
Liu
,
C.-W.
,
Chen
,
D.-L.
,
Shih
,
M.
, and
Tarng
,
D.
,
2020
, “
A Mechanics Model for the Moisture Induced Delamination in Fan-Out Wafer-Level Package
,”
Electronic Components and Technology Conference
,
Orlando, FL
,
May 26–29
, pp.
1205
1211
.10.1109/ECTC32862.2020.00193
10.
IPC/JEDEC,
2014
, “
Moisture/Reflow Sensitivity Classification for Nonhermetic Surface Mount Devices
,” Paper No.
IPC/JEDEC J-STD-020E
.https://www.ipc.org/TOC/IPC-JEDEC-J-STD-020E.pdf
11.
IPC,
2006
, “
Performance Test Methods and Qualification Requirements for Surface Mount Solder Attachments
,” Standard Paper No.
IPC-9701A
.https://www.ipc.org/TOC/IPC-9701A.pdf
12.
Kwatra
,
A.
,
Samet
,
D.
,
Rambhatla
,
V. T.
, and
Sitaraman
,
S. K.
,
2020
, “
Effect of Temperature and Humidity Conditioning on Copper Leadframe/Mold Compound Interfacial Delamination
,”
Microelectron. Reliab.
,
111
, p.
113647
.10.1016/j.microrel.2020.113647
13.
Garete
,
A. J.
,
Li
,
Z.
, and
Taduran
,
A.
,
2020
, “
Epoxy Molding Compound Development for Improved MSL1 Delamination Resistance in Plastic Encapsulated Clip Bond Power Package
,”
Electronics Packaging Technology Conference
,
Singapore
,
Dec. 5–8
, pp.
90
94
.10.1109/EPTC50525.2020.9315114
14.
Yi
,
S.
,
Shen
,
L.
,
Kim
,
J. K.
, and
Yue
,
C. Y.
,
2000
, “
A Failure Criterion for Debonding Between Encapsulants and Leadframes in Plastic IC Packages
,”
J. Adhes. Sci. Technol.
,
14
(
1
), pp.
93
105
.10.1163/156856100742122
15.
Samet
,
D.
,
Kwatra
,
A.
, and
Sitaraman
,
S. K.
,
2015
, “
A Compliance-Based Approach to Study Fatigue Crack Propagation for a Copper-Epoxy Interface
,”
ASME
Paper No. IPACK2015-48447.10.1115/IPACK2015-48447
16.
Oh
,
G.-H.
,
Joo
,
S.-J.
,
Jeong
,
J.-W.
, and
Kim
,
H.-S.
,
2019
, “
Effect of Plasma Treatment on Adhesion Strength and Moisture Absorption Characteristics Between Epoxy Molding Compound/Silicon Chip (EMC/Chip) Interface
,”
Microelectron. Reliab.
,
92
, pp.
63
72
.10.1016/j.microrel.2018.11.004
17.
Carreras
,
L.
,
Bak
,
B. L. V.
,
Jensen
,
S. M.
,
Lequesne
,
C.
,
Xiong
,
H.
, and
Lindgaard
,
E.
,
2023
, “
Benchmark Test for Mode I Fatigue-Driven Delamination in GFRP Composite Laminates: Experimental Results and Simulation With the Inter-Laminar Damage Model Implemented in SAMCEF
,”
Compos. Part B: Eng.
,
253
, p.
110529
.10.1016/j.compositesb.2023.110529
18.
Sankarasubramanian
,
S.
,
Cruz
,
J.
,
Yazzie
,
K.
,
Sundar
,
V.
,
Subramanian
,
V.
,
Alazar
,
T.
,
Yagnamurthy
,
S.
, et al.,
2017
, “
High-Temperature Interfacial Adhesion Strength Measurement in Electronic Packaging Using the Double Cantilever Beam Method
,”
ASME J. Electron. Packag.
,
139
(
2
), p.
020902
.10.1115/1.4036356
19.
Shaygi
,
M.
,
Wunderle
,
B.
,
Arnold
,
J.
,
Pflugler
,
N.
, and
Pufall
,
R.
,
2019
, “
Button Shear Fatigue Test: Fracture-Mechanical Interface Characterization Under Periodic Subcritical Mechanical Loading
,”
International Workshop Thermal Investigations of ICs and Systems
,
Lecco, Italy
, Sept. 25–27, pp.
25
27
.10.1109/THERMINIC.2019.8923708
20.
Yeh
,
S.-S.
,
Lin
,
P. Y.
,
Hsu
,
C. K.
,
Lin
,
Y. S.
,
Wang
,
J. H.
,
Lai
,
P. C.
,
Liao
,
L. L.
, et al.,
2020
, “
Analysis of Underfill-Polymer Interfacial Adhesive Strength by Combined Experimental and Modeling Approaches
,”
International Microsystems, Packaging, Assembly, and Circuits Technology Conference
,
Taipei, Taiwan
,
Oct. 21–23
, pp.
161
164
.10.1109/IMPACT50485.2020.9268535
21.
Chen
,
J.
,
Nguyen
,
Q.
,
Roberts
,
J. C.
,
Suhling
,
J. C.
,
Jaeger
,
R. C.
, and
Lall
,
P.
,
2018
, “
Moisture-Induced Die Stresses in PBGA Packages Exposed to Various Environments
,”
InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
Orlando, San Diego
, CA,
May 29–June 1
, pp.
1112
1119
.10.1109/ITHERM.2018.8419491
22.
Wu
,
J.-Y.
,
Chen
,
T.-W.
,
Chiu
,
T.-C.
,
Chen
,
D.-L.
,
Chen
,
T.-Y.
, and
Shih
,
M.-K.
,
2019
, “
Coupled Hygro-Thermo-Mechanical Analysis of Moisture Induced Interfacial Stresses in Fan-Out Package
,”
International Microsystems, Packaging, Assembly, and Circuits Technology Conference
,
Taipei, Taiwan
,
Oct. 23–25
, pp.
76
79
.10.1109/IMPACT47228.2019.9024983
23.
Wang
,
J.
,
Niu
,
Y.
,
Shao
,
S.
,
Wang
,
H.
,
Xu
,
J.
,
Pham
,
V.
, and
Park
,
S.
,
2020
, “
A Comprehensive Solution for Modeling Moisture Induced Delamination in Electronic Packaging During Solder Reflow
,”
Microelectron. Reliab.
,
112
, p.
113791
.10.1016/j.microrel.2020.113791
24.
Tahir
,
R.
, and
Bingbing
,
Z.
,
2022
, “
Virtual Prototyping Approach for Package Delamination Risk Assessment Under Simulated High Temperature Exposure Using Finite Element Analysis
,”
International Electronics Manufacturing Technology Conference
,
Kuala Lumpur, Malaysia
,
Oct. 19–21
, pp.
1
6
.10.1109/IEMT55343.2022.9969510
25.
Tay
,
A. A. O.
, and
Goh
,
K. Y.
,
2003
, “
A Study of Delamination Growth in the Die-Attach Layer of Plastic IC Packages Under Hygrothermal Loading During Solder Reflow
,”
IEEE Trans. Device Mater. Reliab.
,
3
(
4
), pp.
144
151
.10.1109/TDMR.2003.820793
26.
Tay
,
A. A. O.
,
2005
, “
Modeling of Interfacial Delamination in Plastic IC Packages Under Hygrothermal Loading
,”
ASME J. Electron. Packag.
,
127
(
3
), pp.
268
275
.10.1115/1.1938209
27.
Wang
,
J.
, and
Park
,
S.
,
2016
, “
Non-Linear Finite Element Analysis on Stacked Die Package Subjected to Integrated Vapor-Hygro-Thermal-Mechanical Stress
,”
Electronic Components and Technology Conference
,
Las Vegas, NV
,
May 31–June 3
, pp.
1394
1401
.10.1109/ECTC.2016.238
28.
Chen
,
L.
,
Fan
,
X.
, and
Liu
,
Y.
,
2020
, “
A Direct Multi-Field Coupling Methodology for Modeling Moisture-Induced Stresses and Delamination in Electronic Packages
,”
Electronic Components and Technology Conference
,
Orlando, FL,
May 26–29
, pp.
1064
1069
.10.1109/ECTC32862.2020.00172
29.
Wu
,
M.-L.
, and
Lan
,
J.-S.
,
2021
, “
Prediction of Delamination Failure in Quad Flat No-Lead Packages Using Combined Experimental and Simulation Methods
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
11
(
5
), pp.
785
792
.10.1109/TCPMT.2021.3066790
30.
Anicode
,
S. V. K.
, and
Madenci
,
E.
,
2021
, “
Three-Dimensional Moisture Diffusion Simulation With Time Dependent Saturated Concentration in ANSYS Through Native Thermal and Spring Elements
,”
Microelectron. Reliab.
,
123
, p.
114167
.10.1016/j.microrel.2021.114167
31.
Liu
,
D.-S.
,
Shih
,
M.-K.
, and
Chang
,
C.-M.
,
2009
, “
Application of a Genetic Algorithm to the Design Optimization of a Multilayer Probe Card for Wafer-Level Testing
,”
IEEE Trans. Electron. Packaging Manuf.
,
32
(
1
), pp.
49
58
.10.1109/TEPM.2008.2010776
32.
Hsiao
,
H. Y.
, and
Chiang
,
K. N.
,
2020
, “
AI-Assisted Reliability Life Prediction Model for Wafer-Level Packaging Using the Random Forest Method
,”
J. Mech.
,
37
, pp.
28
36
.10.1093/jom/ufaa007
33.
Bhatasana
,
M.
, and
Marconnet
,
A.
,
2021
, “
Machine-Learning Assisted Optimization Strategies for Phase Change Materials Embedded Within Electronic Packages
,”
Appl. Therm. Eng.
,
199
, p.
117384
.10.1016/j.applthermaleng.2021.117384
34.
Bannantine
,
J. A.
,
Comer
,
J. J.
, and
Handrock
,
J. L.
,
1990
, “
Fundamentals of Metal Fatigue Analysis (Book
),”
Research Supported by the University of Illinois
,
Prentice Hall
,
Englewood Cliffs, NJ
.
35.
Shokrieh
,
M. M.
,
Heidari-Rarani
,
M.
, and
Ayatollahi
,
M. R.
,
2012
, “
Delamination R-Curve as a Material Property of Unidirectional Glass/Epoxy Composites
,”
Mater. Des.
,
34
, pp.
211
218
.10.1016/j.matdes.2011.08.006
36.
Samet
,
D.
,
Trilochan Rambhatla
,
V. N. N.
,
Kwatra
,
A.
, and
Sitaraman
,
S. K.
,
2017
, “
A Fatigue Crack Propagation Model With Resistance Curve Effects for an Epoxy/Copper Interface
,”
Eng. Fract. Mech.
,
180
, pp.
60
72
.10.1016/j.engfracmech.2017.05.008
37.
Soboyejo
,
W. O.
,
Lu
,
G.-Y.
,
Chengalva
,
S.
,
Zhang
,
J.
, and
Kenner
,
V.
,
1999
, “
A Modified Mixed-Mode Bending Specimen for the Interfacial Fracture Testing of Dissimilar Materials
,”
Fatigue Fract. Eng. Mater. Struct
,
22
(
9
), pp.
799
810
.10.1046/j.1460-2695.1999.t01-1-00203.x
38.
Wong
,
E. H.
,
Teo
,
Y. C.
, and
Lim
,
T. B.
,
1998
, “
Moisture Diffusion and Vapour Pressure Modeling of IC Packaging
,”
Electronic Components and Technology Conference
,
Seattle, WA
,
May 25–28
, pp.
1372
1378
.10.1109/ECTC.1998.678922
39.
Yoon
,
S.
,
Jang
,
C.
, and
Han
,
B.
,
2008
, “
Nonlinear Stress Modeling Scheme to Analyze Semiconductor Packages Subjected to Combined Thermal and Hygroscopic Loading
,”
ASME J. Electron. Packag.
,
130
(
2
), p.
024502
.10.1115/1.2912181
40.
Tee
,
Y. T.
, and
Zhong
,
Z.
,
2004
, “
Integrated Vapor Pressure, Hygroswelling, and Thermo-Mechanical Stress Modeling of QFN Package During Reflow With Interfacial Fracture Mechanics Analysis
,”
Microelectron. Reliab.
,
44
(
1
), pp.
105
114
.10.1016/j.microrel.2003.07.004
41.
ANSYS, Inc.
,
2022
, “
Mechanical APDL 2022 R1-Theory Reference
,” ANSYS, Inc., Canonsburg, PA.
42.
Shih
,
M.
,
Chen
,
K.
,
Lee
,
T.
,
Tarng
,
D.
, and
Hung
,
C. P.
,
2021
, “
FE Simulation Model for Warpage Evaluation of Glass Interposer Substrate Packages
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
11
(
4
), pp.
690
696
.10.1109/TCPMT.2021.3065647
43.
Lai
,
Y.-S.
,
Shih
,
M.-K.
,
Lee
,
C.-C.
, and
Wang
,
T. H.
,
2012
, “
Structural Design Guideline to Minimize Extreme Low-k Delamination Potential in 40 nm Flip-Chip Packages
,”
Microelectron. Reliab.
,
52
(
11
), pp.
2851
2855
.10.1016/j.microrel.2012.05.007
44.
Ho
,
S. L.
,
Joshi
,
S. P.
, and
Tay
,
A. A. O.
,
2013
, “
Experiments and Three-Dimensional Modeling of Delamination in an Encapsulated Microelectronic Package Under Thermal Loading
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
3
(
11
), pp.
1859
1867
.10.1109/TCPMT.2013.2266406
45.
Montgomery
,
D. C.
,
2013
,
Design and Analysis of Experiments
, 8th ed.,
Wiley
,
New York
.
46.
Chen
,
S.-Y.
,
2001
, “
An Approach for Impact Structure Optimization Using the Robust Genetic Algorithm
,”
Finite Elem. Anal. Des.
,
37
(
5
), pp.
431
446
.10.1016/S0168-874X(00)00056-1
47.
Chen
,
T. Y.
, and
Chen
,
C. J.
,
1997
, “
Improvements of Simple Genetic Algorithm in Structural Design
,”
Int. J. Numer. Methods Eng.
,
40
(
7
), pp.
1323
1334
.10.1002/(SICI)1097-0207(19970415)40:7<1323::AID-NME117>3.0.CO;2-T
You do not currently have access to this content.