Abstract

The next generation of integrated power electronics packages will implement wide-bandgap devices with ultrahigh device heat fluxes. Although jet impingement has received attention for power electronics thermal management, it is not used in commercial electric vehicles (EVs) because of the associated pressure drop and reliability concerns. In this paper, we present a modular thermal management system designed for automotive power electronics. The system achieves superior thermal performance to benchmarked EVs while adhering to reliability standards and with low pumping power. The system utilizes a low-cost and lightweight plastic manifold to generate jets over an optimized heat sink, which is embedded in the direct-bonded-copper (DBC) substrate. The embedded heat sink concept leverages additive manufacturing to add elliptical pin fins to the DBC substrate. The heat sink geometry is optimized for submerged jet impingement using a unit-cell model and an exhaustive search algorithm. The model predictions are validated using unit-cell experiments. A full-scale power module model is then used to compare the DBC-embedded heat sink against direct DBC cooling and baseplate-integrated heat sinks for single-sided (SS) and double-sided (DS) cooling concepts. Using the SS and DS DBC-embedded cooling concepts, the models predict a thermal resistance that represents a reduction of 75% and 85% compared to the 2015 BMW i3, respectively, for the same water-ethylene glycol inverter flowrate. We have shown that an inverter with a 100-kilo-Watt-per-liter power density is achievable with the proposed design.

References

1.
Yang
,
Y.
,
Dorn-Gomba
,
L.
,
Rodriguez
,
R.
,
Mak
,
C.
, and
Emadi
,
A.
,
2020
, “
Automotive Power Module Packaging: Current Status and Future Trends
,”
IEEE Access
,
8
, pp.
160126
160144
.10.1109/ACCESS.2020.3019775
2.
US Drive
,
2017
, “
Electrical and Electronics Technical Team Roadmap
,” U.S. Department of Energy, Washington, DC, accessed July 3, 2023, https://www.energy.gov/sites/prod/files/2017/11/f39/EETT%20Roadmap%2010-27-17.pdf
3.
Iradukunda
,
A.-C.
,
Huitink
,
D. R.
, and
Luo
,
F.
,
2020
, “
A Review of Advanced Thermal Management Solutions and the Implications for Integration in High-Voltage Packages
,”
IEEE J. Emer. Sel. Top. Power Electron.
,
8
(
1
), pp.
256
271
.10.1109/JESTPE.2019.2953102
4.
Moreno
,
G.
,
Narumanchi
,
S.
,
Feng
,
X.
,
Anschel
,
P.
,
Myers
,
S.
, and
Keller
,
P.
,
2022
, “
Electric-Drive Vehicle Power Electronics Thermal Management: Current Status, Challenges, and Future Directions
,”
ASME J. Electron. Packag.
,
144
(
1
), p.
011004
.10.1115/1.4049815
5.
Buttay
,
C.
,
Rashid
,
J.
,
Johnson
,
C. M.
,
Udrea
,
F.
,
Amaratunga
,
G.
,
Ireland
,
P.
, and
Malhan
,
R. K.
,
2007
, “
Compact Inverter Designed for High-Temperature Operation
,”
IEEE Power Electronics Specialists Conference
, Orlando, FL, June 17–21, pp.
2241
2247
.10.1109/PESC.2007.4342357
6.
Mouawad
,
B.
,
Skuriat
,
R.
,
Li
,
J.
,
Johnson
,
C. M.
, and
DiMarino
,
C.
,
2018
, “
Development of a Highly Integrated 10 kV SiC MOSFET Power Module With a Direct Jet Impingement Cooling System
,” IEEE 30th International Symposium on Power Semiconductor Devices and ICs (
ISPSD
), Chicago, IL, May 13–17, pp.
256
259
.10.1109/ISPSD.2018.8393651
7.
Moreno
,
G.
,
Narumanchi
,
S.
,
Tomerlin
,
J.
, and
Major
,
J.
,
2022
, “
Single-Phase Dielectric Fluid Thermal Management for Power-Dense Automotive Power Electronics
,”
IEEE Trans. Power Electron.
,
37
(
10
), pp.
12474
12485
.10.1109/TPEL.2022.3171744
8.
Liu
,
M.
,
Coppola
,
A.
,
Alvi
,
M.
, and
Anwar
,
M.
,
2022
, “
Comprehensive Review and State of Development of Double-Sided Cooled Package Technology for Automotive Power Modules
,”
IEEE Open J. Power Electron.
,
3
, pp.
271
289
.10.1109/OJPEL.2022.3166684
9.
Liang
,
Z.
,
Ning
,
P.
,
Wang
,
F.
, and
Marlino
,
L.
,
2012
, “
Reducing Parasitic Electrical Parameters With a Planar Interconnection Packaging Structure
,”
Seventh International Conference on Integrated Power Electronics Systems
(
CIPS
), Nuremberg, Germany, Mar. 6–8, pp.
1
6
.https://ieeexplore.ieee.org/document/6170650
10.
Liang
,
Z.
,
Ning
,
P.
,
Wang
,
F.
, and
Marlino
,
L.
,
2012
, “
Planar Bond All: A New Packaging Technology for Advanced Automotive Power Modules
,” IEEE Energy Conversion Congress and Exposition (
ECCE
), Raleigh, NC, Sept. 15–20, pp.
438
443
.10.1109/ECCE.2012.6342788
11.
Liang
,
Z.
,
Marlino
,
L. D.
,
Ning
,
P.
, and
Wang
,
F.
,
2015
, “
Power Module Packaging With Double Sided Planar Interconnection and Heat Exchangers
,” U.S. Patent No.
9041183
.https://www.osti.gov/doepatents/biblio/1182569
12.
Doerr
,
J.
,
Attensperger
,
T.
,
Wittmann
,
L.
, and
Enzinger
,
T.
,
2018
, “
The New Electric Axle Drives From Audi
,”
MTZ Worldwide
,
79
(
6
), pp.
18
25
.10.1007/s38313-018-0042-4
13.
Jones-Jackson
,
S.
,
Rodriguez
,
R.
, and
Emadi
,
A.
,
2021
, “
Jet Impingement Cooling in Power Electronics for Electrified Automotive Transportation: Current Status and Future Trends
,”
IEEE Trans. Power Electron.
,
36
(
9
), pp.
10420
10435
.10.1109/TPEL.2021.3059558
14.
Bhunia
,
A.
,
Chandrasekaran
,
S.
, and
Chen
,
C.-L.
,
2007
, “
Performance Improvement of a Power Conversion Module by Liquid Micro-Jet Impingement Cooling
,”
IEEE Trans. Compon. Packaging Technol.
,
30
(
2
), pp.
309
316
.10.1109/TCAPT.2007.898366
15.
Skuriat
,
R.
,
2012
, “
Direct Jet Impingement Cooling of Power Electronics
,”
Ph.D. thesis
,
University of Nottingham
,
Nottingham, UK
.http://eprints.nottingham.ac.uk/13982/1/576546.pdf
16.
Agbim
,
K. A.
,
2017
, “
Single-Phase Liquid Cooling for Thermal Management of Power Electronic Devices
,”
Ph.D. thesis
,
Georgia Institute of Technology
,
Atlanta, GA
.https://repository.gatech.edu/server/api/core/bitstreams/441d0e8c-f0e5-4b70-b081-e287074c00c1/content
17.
Parida
,
P. R.
,
Ekkad
,
S. V.
, and
Ngo
,
K.
,
2012
, “
Impingement-Based High Performance Cooling Configurations for Automotive Power Converters
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
834
847
.10.1016/j.ijheatmasstransfer.2011.10.024
18.
Overholt, M. R., McCandless, A., Kelly, K. W., and Motakef, S.
,
2005
, “
Micro-Jet Arrays for Cooling of Electronic Equipment
,”
ASME
Paper No. ICMM2005-75250.10.1115/ICMM2005-75250
19.
Browne
,
E. A.
,
Michna
,
G. J.
,
Jensen
,
M. K.
, and
Peles
,
Y.
,
2010
, “
Microjet Array Single-Phase and Flow Boiling Heat Transfer With R134a
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5027
5034
.10.1016/j.ijheatmasstransfer.2010.07.062
20.
Robinson
,
A.
,
Kempers
,
R.
,
Colenbrander
,
J.
,
Bushnell
,
N.
, and
Chen
,
R.
,
2018
, “
A Single Phase Hybrid Micro Heat Sink Using Impinging Micro-Jet Arrays and Microchannels
,”
Appl. Therm. Eng.
,
136
, pp.
408
418
.10.1016/j.applthermaleng.2018.02.058
21.
Osman
,
A.
,
Moreno
,
G.
,
Myers
,
S.
,
Narumanchi
,
S. V.
, and
Joshi
,
Y.
,
2023
, “
Single-Phase Jet Impingement Cooling for a Power-Dense Silicon Carbide Power Module
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
, epub, pp.
1
1
.10.1109/TCPMT.2023.3276712
22.
Ndao
,
S.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2014
, “
Effects of Pin Fin Shape and Configuration on the Single-Phase Heat Transfer Characteristics of Jet Impingement on Micro Pin Fins
,”
Int. J. Heat Mass Transfer
,
70
, pp.
856
863
.10.1016/j.ijheatmasstransfer.2013.11.062
23.
Lu
,
M.-C.
,
2020
, “
Comparative Study on Power Module Architectures for Modularity and Scalability
,”
ASME J. Electron. Packag.
,
142
(
4
), p.
040801
.10.1115/1.4047472
24.
Moreno
,
G.
,
Narumanchi
,
S. V. J.
,
Xuhui
,
F.
,
Osman
,
A.
,
Myers
,
S. M.
,
Kelly
,
B. J.
, and
Paret
,
P. P.
,
2022
, “
Cooling Automotive Power Electronics
,” U.S. Patent No. 17/573,445.
25.
Stevanovic
,
L. D.
,
Beaupre
,
R. A.
,
Gowda
,
A. V.
,
Pautsch
,
A. G.
, and
Solovitz
,
S. A.
,
2010
, “
Integral Micro-Channel Liquid Cooling for Power Electronics
,”
Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition
(
APEC
), Palm Springs, CA, Feb. 21–25, pp.
1591
1597
.10.1109/APEC.2010.5433444
26.
Lee
,
K.-D.
,
Kim
,
S.-M.
, and
Kim
,
K.-Y.
,
2013
, “
Multi-Objective Optimization of a Row of Film Cooling Holes Using an Evolutionary Algorithm and Surrogate Modeling
,”
Numer. Heat Transfer, Part A Appl.
,
63
(
8
), pp.
623
641
.10.1080/10407782.2013.751316
27.
Horiuchi, K., Nishihara, A., and Sugimura, K.,
2009
, “
Multi-Objective Optimization of Pin-Fin Heatsinks
,”
ASME
Paper No. IMECE2009-10300.10.1115/IMECE2009-10300
28.
Hofmann
,
H. M.
,
Kaiser
,
R.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Calculations of Steady and Pulsating Impinging Jets-An Assessment of 13 Widely Used Turbulence Models
,”
Numer. Heat Transfer, Part B Fundam.
,
51
(
6
), pp.
565
583
.10.1080/10407790701227328
29.
KYOCERA Global Corp
., 2023, “
Technical Data - Silicon Nitride
,” KYOCERA Global Corporation, Japan, accessed July 3, 2023, https://global.kyocera.com/prdct/fc/list/material/silicon_nitride/silicon_nitride.html
30.
Luedtke
,
A.
,
2004
, “
Thermal Management Materials for High-Performance Applications
,”
Adv. Eng. Mater.
,
6
(
3
), pp.
142
144
.10.1002/adem.200300552
31.
Wei
,
R.
,
Song
,
S.
,
Yang
,
K.
,
Cui
,
Y.
,
Peng
,
Y.
,
Chen
,
X.
,
Hu
,
X.
, and
Xu
,
X.
,
2013
, “
Thermal Conductivity of 4H-SiC Single Crystals
,”
J. Appl. Phys.
,
113
(
5
), p.
053503
.10.1063/1.4790134
32.
Parker Lord Inc
., 2023, “
CoolTherm EP-6008 BLK/6252 Epoxy System
,” Parker Lord, Cary, NC, accessed July 3, 2023, https://www.lord.com/products-and-solutions/electronic-materials/cooltherm-ep6008blk-ep6252-epoxy-system
33.
MatWeb
, 2023, “
Eutectic Solder Data Sheet
,” MatWeb, Blacksburg, VA, accessed July 3, 2023, https://www.matweb.com/search/datasheetText.aspx?bassnum=MLSS63
34.
Turng
,
L.
, and
Wang
,
V.
,
1993
, “
On the Simulation of Microelectronic Encapsulation With Epoxy Molding Compound
,”
J. Reinf. Plast. Compos.
,
12
(
5
), pp.
506
519
.10.1177/073168449301200502
35.
Zhang
,
H.-Q.
,
Bai
,
H.-L.
,
Jia
,
Q.
,
Guo
,
W.
,
Liu
,
L.
, and
Zou
,
G.-S.
,
2020
, “
High Electrical and Thermal Conductivity of Nano-Ag Paste for Power Electronic Applications
,”
Acta Metall. Sin. (English Lett.)
,
33
(
11
), pp.
1543
1555
.10.1007/s40195-020-01083-3
36.
Holman
,
J. P.
,
1966
,
Experimental Methods for Engineers
,
McGraw-Hill, New York
.
37.
El-Sheikh
,
H. A.
, and
Gurimella
,
S. V.
,
2000
, “
Enhancement of Air Jet Impingement Heat Transfer Using Pin-Fin Heat Sinks
,”
IEEE Trans. Compon. Packag. Technol.
,
23
(
2
), pp.
300
308
.10.1109/6144.846768
38.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111403
.10.1115/1.4030989
39.
Moreno
,
G.
,
Narumanchi
,
S.
,
Venson
,
T.
, and
Bennion
,
K.
,
2013
, “
Microstructured Surfaces for Single-Phase Jet Impingement Heat Transfer Enhancement
,”
J. Therm. Sci. Eng. Appl.
,
5
(
3
), p.
031004
.10.1115/1.4023308
40.
Wolf
,
D. H.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
1993
, “
Jet Impingement Boiling
,”
Advances in Heat Transfer
, Vol. 23, Elsevier, Amsterdam, The Netherlands, pp.
1
132
.10.1016/S0065-2717(08)70005-4
41.
de Brún
,
C.
,
Jenkins
,
R.
,
Lupton
,
T.
,
Lupoi
,
R.
,
Kempers
,
R.
, and
Robinson
,
A.
,
2017
, “
Confined Jet Array Impingement Boiling
,”
Exp. Therm. Fluid Sci.
,
86
, pp.
224
234
.10.1016/j.expthermflusci.2017.04.002
42.
Marsh
,
W.
, and
Mudawar
,
I.
,
1989
, “
Predicting the Onset of Nucleate Boiling in Wavy Free-Falling Turbulent Liquid Films
,”
Int. J. Heat Mass Transfer
,
32
(
2
), pp.
361
378
.10.1016/0017-9310(89)90183-X
43.
Vader
,
D. T.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
1992
, “
Convective Nucleate Boiling on a Heated Surface Cooled by an Impinging, Planar Jet of Water
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
114
(
1
), pp.
152
160
.10.1115/1.2911241
44.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
84
(
3
), pp.
207
213
.10.1115/1.3684339
45.
Bergles
,
A. E.
, and
Rohsenow
,
W. M.
,
1964
, “
The Determination of Forced-Convection Surface-Boiling Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
86
(
3
), pp.
365
372
.10.1115/1.3688697
46.
Davis
,
E. J.
, and
Anderson
,
G.
,
1966
, “
The Incipience of Nucleate Boiling in Forced Convection Flow
,”
AIChE J.
,
12
(
4
), pp.
774
780
.10.1002/aic.690120426
47.
Frost
,
W.
, and
Dazkowic
,
G.
,
1967
, “
An Extension of Method for Predicting Incipient Boiling on Commerically Finished Surfaces
,” Mechanical Enggineering, 89(12),
ASME,
New York, p.
68
.
48.
Li
,
Y.-Y.
,
Chen
,
Y.-J.
, and
Liu
,
Z.-H.
,
2014
, “
Correlations for Boiling Heat Transfer Characteristics of High-Velocity Circular Jet Impingement on the Nano-Characteristic Stagnation Zone
,”
Int. J. Heat Mass Transfer
,
72
, pp.
177
185
.10.1016/j.ijheatmasstransfer.2014.01.008
49.
Ghiaasiaan
,
S. M.
,
2007
,
Two-Phase Flow, Boiling, and Condensation: In Conventional and Miniature Systems
,
Cambridge University Press, Cambridge, UK
.
You do not currently have access to this content.