Abstract

A microchannel heat sink integrated with a three-dimensional manifold using direct bonded copper (DBC) is promising for high power density electronics due to the combination of low thermal resistance and reduced pressure drop. However, this requires much progress on the fabrication and high-quality point-contact bonding processes of the microchannel substrate and three-dimensional manifold DBCs. In this study, we have developed processing techniques for surface preparations and high-quality point-contact solder bonding between the two DBC substrates. We utilized chemical polishing followed by electroless plating to prevent excess solder from blocking the microchannels. We performed a parametric study to investigate the impact of bonding time and surface roughness on the tensile strength of the bonding interface. The bonding strength increased from 1.8 MPa to 2.3 MPa as the bonding time increased from 10 to 30 min while reducing the surface roughness from Rz = 0.21 to 0.05 μm, resulting in increasing the bonding strength from 0.16 MPa to 2.07 MPa. We successfully tested the microcooler up to the inlet pressure of 70 kPa and pressure drop of 30 kPa, which translates to the tensile strength at the bonding point contacts, which remains well below the 2.30 MPa. We achieved the junction-to-coolant thermal resistance of 0.2 cm2 K/W at chip heat flux of 590 W/cm2. Thus, our study provides an important proof-of-concept demonstration toward enabling high power density modules for power conversion applications.

References

1.
He
,
Z.
,
Yan
,
Y.
, and
Zhang
,
Z.
,
2021
, “
Thermal Management and Temperature Uniformity Enhancement of Electronic Devices by Micro Heat Sinks: A Review
,”
Energy
,
216
, p.
119223
.10.1016/j.energy.2020.119223
2.
Viswanath
,
R.
,
Wakharkar
,
V.
,
Watwe
,
A.
, and
Lebonheur
,
V.
,
2000
, “
Thermal Performance Challenges From Silicon to Systems
,”
Intel Technol. J.
,
4
(
3
), pp.
1
16
.https://www.researchgate.net/publication/2480020_Thermal_Performance_Challenges_from_Silicon_to_Systems
3.
Kanata
,
T.
,
Nishiwaki
,
K.
, and
Hamada
,
K.
,
2010
, “
Development Trends of Power Semiconductors for Hybrid Vehicles
,”
Proceedings of the 2010 International Power Electronics Conference-ECCE ASIA
, Sapporo, Japan, June 21–24, pp.
778
782
.10.1109/IPEC.2010.5543294
4.
Schiestl
,
M.
,
Marcolini
,
F.
,
Incurvati
,
M.
,
Capponi
,
F. G.
,
Stärz
,
R.
,
Caricchi
,
F.
,
Rodríguez
,
A. S.
, and
Wild
,
L.
,
2020
, “
Development of a High Power Density Drive System for Unmanned Aerial Vehicles
,”
IEEE Trans. Power Electron.
,
36
(
3
), pp.
3159
3171
.10.1109/TPEL.2020.3013899
5.
Wu
,
W.
,
Gao
,
G.
,
Dong
,
L.
,
Wang
,
Z.
,
Held
,
M.
,
Jacob
,
P.
, and
Scacco
,
P.
,
1996
, “
Thermal Reliability of Power Insulated Gate Bipolar Transistor (IGBT) Modules
,”
Proceedings of the Twelfth Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, Austin, TX, Mar. 5–7, pp.
136
141
.10.1109/STHERM.1996.545103
6.
Liu
,
M.
,
Coppola
,
A.
,
Alvi
,
M.
, and
Anwar
,
M.
,
2022
, “
Comprehensive Review and State of Development of Double-Sided Cooled Package Technology for Automotive Power Modules
,”
IEEE Open J. Power Electron.
,
3
, pp.
271
289
.10.1109/OJPEL.2022.3166684
7.
Kang
,
S. S.
,
2012
, “
Advanced Cooling for Power Electronics
,”
Proceedings of the 7th International Conference on Integrated Power Electronics Systems
(
CIPS
), Nuremberg, Germany, Mar. 6–8, pp.
1
8
.https://ieeexplore.ieee.org/document/6170618
8.
Drofenik
,
U.
,
Stupar
,
A.
, and
Kolar
,
J. W.
,
2011
, “
Analysis of Theoretical Limits of Forced-Air Cooling Using Advanced Composite Materials With High Thermal Conductivities
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
1
(
4
), pp.
528
535
.10.1109/TCPMT.2010.2100730
9.
Kandlikar
,
S. G.
, and
Hayner
,
C. N.
,
2009
, “
Liquid Cooled Cold Plates for Industrial High-Power Electronic Devices—Thermal Design and Manufacturing Considerations
,”
Heat Transfer Eng.
,
30
(
12
), pp.
918
930
.10.1080/01457630902837343
10.
Wang
,
P.
,
McCluskey
,
P.
, and
Bar-Cohen
,
A.
,
2013
, “
Two-Phase Liquid Cooling for Thermal Management of IGBT Power Electronic Module
,”
ASME J. Electron. Packag.
,
135
(
2
), p.
021001
.10.1115/1.4023215
11.
Blinov
,
A.
,
Vinnikov
,
D.
, and
Lehtla
,
T.
,
2011
, “
Cooling Methods for High-Power Electronic Systems
,”
Power Electr. Eng.
,
29
, pp.
79
86
.10.2478/v10144-011-0014-x
12.
Schulz-Harder
,
J.
,
Exel
,
K.
, and
Meyer
,
A.
,
2006
, “
Direct Liquid Cooling of Power Electronics Devices
,”
Proceedings of the 4th International Conference on Integrated Power Systems
, Naples, Italy, June 7–9, pp.
1
6
.https://ieeexplore.ieee.org/document/5758077
13.
Liang
,
Z.
,
2015
, “
Integrated Double Sided Cooling Packaging of Planar SiC Power Modules
,” Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (
ECCE
), Montreal, QC, Canada, Sept. 20–24, pp.
4907
4912
.10.1109/ECCE.2015.7310352
14.
Ning
,
P.
,
Liang
,
Z.
, and
Wang
,
F.
,
2013
, “
Double-Sided Cooling Design for Novel Planar Module
,”
Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition
(
APEC
), Long Beach, CA, Mar. 17–21, pp.
616
621
.10.1109/APEC.2013.6520274
15.
Klein
,
K.
,
Raemer
,
O.
,
Hoene
,
E.
,
Yasuda
,
Y.
,
Ito
,
H.
,
Kurita
,
F.
,
Enoki
,
M.
,
Nakamura
,
H.
, and
Okishiro
,
K.
,
2020
, “
Low Inductive Full Ceramic SiC Power Module for High-Temperature Automotive Applications
,”
Proceedings of the PCIM Europe Digital Days 2020; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management
, Nuremburg, Germany, July 7–8, pp.
1
8
.https://ieeexplore.ieee.org/document/9178026
16.
Zhu
,
N.
,
Chen
,
M.
,
Xu
,
D.
,
Mantooth
,
H. A.
, and
Glover
,
M. D.
,
2016
, “
Design and Evaluation of Press-Pack SiC MOSFET
,” Proceedings of the 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (
WiPDA
), Fayetteville, Arkansas, Nov. 7–9, pp.
5
10
.10.1109/WiPDA.2016.7799901
17.
Jankowski
,
N. R.
,
Everhart
,
L.
,
Morgan
,
B.
,
Geil
,
B.
, and
McCluskey
,
P.
,
2007
, “
Comparing Microchannel Technologies to Minimize the Thermal Stack and Improve Thermal Performance in Hybrid Electric Vehicles
,”
Proceedings of the 2007 IEEE Vehicle Power and Propulsion Conference
, Arlington, TX, Sept. 9–12, pp.
124
130
.10.1109/VPP C.2007.4544111
18.
Sharar
,
D. J.
,
Jankowski
,
N. R.
, and
Morgan
,
B.
,
2010
, “
Thermal Performance of a Direct-Bond-Copper Aluminum Nitride Manifold-Microchannel Cooler
,”
Proceedings of the 2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), Santa Clara, CA, Feb. 21–25, pp.
68
73
.10.1109/STHERM.2010.5444313
19.
Chen
,
H.
,
Wei
,
T.
,
Chen
,
Y.
,
Li
,
X.
,
Li
,
N.
,
Zhu
,
Q.
,
Hazra
,
S.
, et al.,
2022
, “
Feasibility Design of Tight Integration of Low Inductance SiC Power Module With Microchannel Cooler
,” Proceedings of the 2022 IEEE Applied Power Electronics Conference and Exposition (
APEC
), Houston, TX, Mar. 20–24, pp.
962
965
.10.1109/APEC43599.2022.9773698
20.
Schulz-Harder
,
J.
,
2003
, “
Advantages and New Development of Direct Bonded Copper Substrates
,”
Microelectron. Reliab.
,
43
(
3
), pp.
359
365
.10.1016/S0026-2714(02)00343-8
21.
Stoll
,
T.
,
Feuerer
,
T.
,
Hensel
,
A.
, and
Franke
,
J.
,
2022
, “
Review of the Direct Bonded Copper (DBC) Process and Its Adaption to Laser Powder Bed Fusion (LPBF)
,”
Proc. SPIE
11992
, pp.
7
18
.
22.
Tuan
,
W. H.
, and
Lee
,
S. K.
,
2014
, “
Eutectic Bonding of Copper to Ceramics for Thermal Dissipation Applications—A Review
,”
J. Eur. Ceram. Soc.
,
34
(
16
), pp.
4117
4130
.10.1016/j.jeurceramsoc.2014.07.011
23.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
24.
Lee
,
B. S.
,
Hyun
,
S. K.
, and
Yoon
,
J. W.
,
2017
, “
Cu–Sn and Ni–Sn Transient Liquid Phase Bonding for Die-Attach Technology Applications in High-Temperature Power Electronics Packaging
,”
J. Mater. Sci.: Mater. Electron.
,
28
(
11
), pp.
7827
7833
.10.1007/s10854-017-6479-4
25.
Walsh
,
F. C.
, and
Low
,
C. T. J.
,
2016
, “
A Review of Developments in the Electrodeposition of Tin
,”
Surf. Coat. Technol.
,
288
, pp.
79
94
.10.1016/j.surfcoat.2015.12.081
26.
Ashworth
,
M. A.
,
Wilcox
,
G. D.
,
Higginson
,
R. L.
,
Heath
,
R. J.
,
Liu
,
C.
, and
Mortimer
,
R. J.
,
2015
, “
The Effect of Electroplating Parameters and Substrate Material on Tin Whisker Formation
,”
Microelectron. Reliab.
,
55
(
1
), pp.
180
191
.10.1016/j.microrel.2014.10.005
27.
Hu
,
T.
,
Chen
,
H.
,
Wang
,
C.
,
Huang
,
M.
, and
Zhao
,
F.
,
2017
, “
Study of Electroless Sn-Coated Cu Microparticles and Their Application as a High Temperature Thermal Interface Material
,”
Surf. Coat. Technol.
,
319
, pp.
230
240
.10.1016/j.surfcoat.2017.04.002
28.
Araźna
,
A.
, and
Bieliński
,
J.
,
2006
, “
Investigation of Electroless Tin Deposition From Acidic Thiourea-Type Bath
,”
Proc. SPIE
6347
, pp.
513
516
.10.1117/12.714555
29.
Zhou
,
P.
,
Zhang
,
J.
,
Zhang
,
Y.
,
Liang
,
J.
,
Liu
,
Y.
,
Liu
,
B.
, and
Zhang
,
W.
,
2016
, “
Activation of Hydrogen Peroxide During the Corrosion of Nanoscale Zero Valent Copper in Acidic Solution
,”
J. Mol. Catal. A: Chem.
,
424
, pp.
115
120
.10.1016/j.molcata.2016.08.022
30.
Luke
,
D. A.
,
1984
, “
Etching of Copper With Sulphuric Acid/Hydrogen Peroxide Solutions
,”
Trans. IMF
,
62
(
1
), pp.
81
87
.10.1080/00202967.1984.11870677
31.
Banks
,
P. S.
,
Stuart
,
B. C.
,
Komashko
,
A. M.
,
Feit
,
M. D.
,
Rubenchik
,
A. M.
, and
Perry
,
M. D.
,
2000
, “
Femtosecond Laser Materials Processing
,”
Proc. SPIE
3934
, pp.
14
21
.10.1117/12.386356
32.
Lin
,
Y.
,
Wei
,
T.
,
Moy
,
W. J.
,
Chen
,
H.
,
Gupta
,
M. P.
,
Degner
,
M.
,
Asheghi
,
M.
,
Mantooth
,
H. A.
, and
Goodson
,
K. E.
,
2024
, “
Multi-Level Embedded Three-Dimensional Manifold Microchannel Heat Sink of Aluminum Nitride Direct Bonded Copper for the High-Power Electronic Module
,”
ASME J. Electron. Packag.
,
146
(
1
), p.
011006
.10.1115/1.4062384
33.
Sharma
,
A.
,
Cheon
,
C. S.
, and
Jung
,
J. P.
,
2016
, “
Recent Progress in Electroless Plating of Copper
,”
J. Microelectron. Packag. Soc.
,
23
(
4
), pp.
1
6
.10.6117/kmeps.2016.23.4.001
34.
Moradi
,
M.
,
Shirazi
,
B. G.
,
Sadeghi
,
A.
, and
Seidi
,
S.
,
2022
, “
Electroless Plating of Sn/Cu/Zn Triple Layer on AA6082 Aluminum Alloy
,”
Int. J. Lightweight Mater. Manuf.
,
5
(
1
), pp.
1
10
.10.1016/j.ijlmm.2021.08.002
35.
Soroush
,
F.
,
Jung
,
K. W.
,
Iyengar
,
M.
,
Malone
,
C.
,
Asheghi
,
M.
, and
Goodson
,
K.
,
2020
, “
Mechanical Design and Reliability of Gold-Tin Eutectic Bonding for Silicon-Based Thermal Management Devices
,”
Proceedings of the 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, July 21–23, pp.
957
962
.10.1109/ITherm45881.2020.9190368
36.
Hang
,
C.
,
Tian
,
R.
,
Zhao
,
L.
, and
Tian
,
Y.
,
2018
, “
Influence of Interfacial Intermetallic Growth on the Mechanical Properties of Sn-37Pb Solder Joints Under Extreme Temperature Thermal Shock
,”
Appl. Sci.
,
8
(
11
), p.
2056
.10.3390/app8112056
37.
An
,
T.
, and
Qin
,
F.
,
2014
, “
Effects of the Intermetallic Compound Microstructure on the Tensile Behavior of Sn3.0Ag0.5Cu/Cu Solder Joint Under Various Strain Rates
,”
Microelectron. Reliab.
,
54
(
5
), pp.
932
938
.10.1016/j.microrel.2014.01.008
38.
Zhang
,
Q. K.
,
Zou
,
H. F.
, and
Zhang
,
Z. F.
,
2009
, “
Tensile and Fatigue Behaviors of Aged Cu/Sn-4Ag Solder Joints
,”
J. Electron. Mater.
,
38
(
6
), pp.
852
859
.10.1007/s11664-009-0769-4
39.
Yang
,
P. F.
,
Lai
,
Y. S.
,
Jian
,
S. R.
,
Chen
,
J.
, and
Chen
,
R. S.
,
2008
, “
Nanoindentation Identifications of Mechanical Properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 Intermetallic Compounds Derived by Diffusion Couples
,”
Mater. Sci. Eng.: A
,
485
(
1–2
), pp.
305
310
.10.1016/j.msea.2007.07.093
40.
Han
,
B.
,
Sun
,
F.
,
Ban
,
G.
,
Liu
,
Y.
,
Li
,
T.
, and
Pang
,
S.
,
2019
, “
Effect of Cu, Ag on the Microstructure and IMC Evolution of Sn5Sb–CuAgNi/Cu Solder Joints
,”
Mater. Res. Express
,
6
(
8
), p.
086309
.10.1088/2053-1591/ab1f4a
You do not currently have access to this content.