Abstract

This paper aims to demonstrate the biaxial bending strength test on thin silicon dies using the classic ball-on-ring (BoR) test and discuss it in detail by comparing those results with the newly-proposed point load on elastic foundation (PoEF) test. The geometric linear and nonlinear solutions to the BoR test are reviewed and also provided with theoretical and numerical formulations, respectively. Three different thicknesses (t = 42 μm, 57 μm, and 82 μm) of the thin silicon dies (with a size of 10 mm × 10 mm) are tested in the BoR test, and their bending strengths, load–displacement curves and failure modes are presented and thoroughly discussed with a comparison of the published data from the PoEF test. It is found that, for the bending strengths of 57 μm and 82 μm-thick dies, the data from both the BoR and PoEF tests are very consistent, but not for 42 μm-thick dies with a relatively lower value in the BoR test. This lower strength value in the BoR test is attributed to the more pronounced local buckling effect than the PoEF test. Based on that, it can concluded that the PoEF test is better and more reliable than the conventional BoR as for testing the ultrathin silicon dies, even though both tests are identical for the regularly thin dies.

References

1.
Burghartz
,
J.
,
2011
,
Ultra-Thin Chip Technology and Applications
,
Springer Science & Business Media
, New York.
2.
Gupta
,
S.
,
Navaraj
,
W. T.
,
Lorenzelli
,
L.
, and
Dahiya
,
R.
,
2018
, “
Ultra-Thin Chips for High-Performance Flexible Electronics
,”
Npj Flex Electron.
,
2
(
1
), p.
8
.10.1038/s41528-018-0021-5
3.
Kirstein
,
A. F.
, and
Woolley
,
R. M.
,
1967
, “
Symmetrical Bending of Thin Circular Elastic Plates on Equally Spaced Point Supports
,”
J. Res. Natl. Bur. Stand.
,
71C
(
1
), pp.
1
10
.10.6028/jres.071C.002
4.
Shetty
,
D. K.
,
Rosenfield
,
A. R.
,
Maguire
,
P.
,
Bansal
,
G. K.
, and
Duckworth
,
W. H.
,
1980
, “
Biaxial Flexure Test for Ceramics
,”
Am. Ceram. Soc. Bull
,
59
(
12
), pp.
1193
1197
.https://www.osti.gov/biblio/6509122
5.
de-With
,
G.
, and
Wagemans
,
H. H. M.
,
1989
, “
Ball-on-Ring Test Revisited
,”
J. Am. Ceram. Soc
,
72
(
8
), pp.
1538
1541
.10.1111/j.1151-2916.1989.tb07702.x
6.
Schonfelder
,
S.
,
Ebert
,
M.
, and
Bagdahn
,
J.
,
2006
, “
Influence of the Thickness of Silicon Dies on Strength
,”
The 7th International Confernece on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems
,
EuroSim
, Como, Italy, Apr. 24–26, p.
1
.10.1109/ESIME.2006.1644045
7.
Huang
,
P. S.
, and
Tsai
,
M. Y.
,
2009
, “
Improved Ball-on-Elastic-Pad and Ball-on-Hole Tests for Silicon Die Strength
,” The 8th International Microsystems, Packaging, Assembly and Circuits Technology Conference (
IMPACT2009
),
Taipei, Taiwan
, Oct. 21–23, pp.
518
521
.10.1109/IMPACT.2009.5382233
8.
Zhao
,
J.-H.
,
Tellkamp
,
J.
,
Gupta
,
V.
, and
Edwards
,
D. R.
,
2009
, “
Experimental Evaluations of the Strength of Silicon Die by 3-Point-Bend Versus Ball-on-Ring Tests
,”
IEEE Trans. Electron. Packag. Manuf.
,
32
(
4
), pp.
248
255
.10.1109/TEPM.2009.2028329
9.
Chae
,
S.-H.
,
Zhao
,
J.-H.
,
Edwards
,
D. R.
, and
Ho
,
P. S.
,
2010
, “
Effect of Dicing Technique on the Fracture Strength of Si Dies With Emphasis on Multimodal Failure Distribution
,”
IEEE Trans. Device Mater. Reliab.
,
10
(
1
), pp.
149
156
.10.1109/TDMR.2009.2037141
10.
Chae
,
S.-H.
,
Zhao
,
J.-H.
,
Edwards
,
D. R.
, and
Ho
,
P. S.
, June
2010
, “
Verification of Ball-on-Ring Test Using Finite Element Analysis
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
Las Vegas, NV
, June 2–5.10.1109/ITHERM.2010.5501307
11.
Jeon
,
E.-B.
,
Park
,
J.-D.
,
Song
,
J. H.
,
Lee
,
H. J.
, and
Kim
,
H.-S.
,
2012
, “
Bi-Axial Fracture Strength Characteristic of an Ultrathin Flash Memory Chip
,”
J. Micromech. Microeng.
,
22
(
10
), p.
105014
.10.1088/0960-1317/22/10/105014
12.
Barnat
,
S.
,
Fremont
,
H.
,
Gracia
,
A.
, and
Cadalen
,
E.
,
2012
, “
Evaluation by Three-Point-Bend and Ball-on-Ring Tests of Thinning Process on Silicon Die Strength
,”
Microelectron. Reliab.
,
52
(
9–10
), pp.
2278
2282
.10.1016/j.microrel.2012.06.093
13.
Naumann
,
F.
,
Mittag
,
M.
,
Bernach
,
M.
, and
Petzold
,
M.
,
2016
, “
Probabilistic Strength Characterization of Thin Semiconductor Devices for Power Electronic Applications
,” The 9th International Conference on Integrated Power Electronics System (
CIPS 2016
), Nuremberg, Germany, Mar. 8–10, pp.
1
5
.https://ieeexplore.ieee.org/document/7736733
14.
Marks
,
M. R.
,
Hassan
,
Z.
, and
Cheong
,
K. Y.
,
2014
, “
Characterization Methods for Ultrathin Wafer and Die Quality: A Review
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
4
(
12
), pp.
2042
2057
.10.1109/TCPMT.2014.2363570
15.
Tsai
,
M. Y.
,
Chen
,
H. J.
, and
Yeh
,
J. H.
,
2019
, “
Evaluation of Bending Strength of Window Glass Substrate With Considerations of Uni- and Bi-Axial Loading, and Free Edge Stresses
,”
ASME J. Electron. Packag.
,
141
(
4
), p. 041007.10.1115/1.4044961
16.
Tsai
,
M. Y.
, and
Liu
,
H. Y.
,
2022
, “
Geometric Nonlinear Effect on Biaxial Bending Strength of Thin Silicon Die in the Ball-on-Ring Test
,”
ASME J. Electron. Packag.
,
144
(
3
), p.
031002
.10.1115/1.4051256
17.
Tsai
,
M. Y.
,
Yeh
,
J. H.
,
Huang
,
P. S.
,
Chen
,
D. L.
,
Shih
,
M. K.
, and
Tarng
,
D.
,
2020
, “
Geometric Nonlinear Effect on Biaxial Bending Strength of Thin Silicon Die in the PoEF Test
,”
IEEE Trans. Device Mater. Reliab.
,
20
(
2
), pp.
442
451
.10.1109/TDMR.2020.2987010
18.
Westergaard
,
H. M.
,
1926
, “
Stresses in Concrete Pavements Computed by Theoretical Analysis
,”
Public Roads
,
7
(
2
), pp.
25
35
.https://trid.trb.org/view/97833
You do not currently have access to this content.