Abstract

The paper focused on the changes in microstructure and mechanical properties of the full Cu41Sn11 solder joint (Cu/Cu41Sn11/Cu) during isothermal aging at 420 °C. It was motivated by potential applications of Cu–Sn intermetallic compounds (IMCs) solder joint in third-generation wide bandgap semiconductor devices. Experimental results revealed that the Cu41Sn11 phase was unstable under high-temperature conditions, the full Cu41Sn11 joint transformed into the full α(Cu) joint (Cu/α(Cu)/Cu) joint at 150 h during thermal aging. The formed α(Cu) phase was a Cu solid solution with inhomogeneous Sn atomic concentration, and its crystal structure and orientation were consistent with the original Cu plate. The conversion of the Cu41Sn11 to α(Cu) was accompanied by the formation of voids due to the volume shrinkage effect, predominantly near the middle of the solder joint interface. The α(Cu) solder joint presented a decrease in strength but an increase in strain rate sensitivity index compared to the Cu41Sn11 solder joint. Furthermore, the strain rate sensitivity index of α(Cu) and Cu41Sn11 is lower than that of ordinary Sn solders. After the shear test, the fractures that occurred in Cu41Sn11 grains were brittle, while the fractures in α(Cu) grains were ductile.

References

1.
Kim
,
H. K.
,
Liou
,
H. K.
, and
Tu
,
K. N.
,
1995
, “
Three‐Dimensional Morphology of a Very Rough Interface Formed in the Soldering Reaction Between Eutectic SnPb and Cu
,”
Appl. Phys. Lett.
,
66
(
18
), pp.
2337
2339
.10.1063/1.113975
2.
Tao
,
W.
,
Gang
,
C.
,
Wang
,
Y.
,
Xu
,
C.
, and
Lu
,
G. Q.
,
2010
, “
Uniaxial Ratcheting and Fatigue Behaviors of Low-Temperature Sintered Nano-Scale Silver Paste at Room and High Temperatures
,”
Mater. Sci. Eng., A
,
527
(
24–25
), pp.
6714
6722
.10.1016/j.msea.2010.07.012
3.
Tan
,
Y.
,
Li
,
X.
, and
Chen
,
X.
,
2014
, “
Fatigue and Dwell-Fatigue Behavior of Nano-Silver Sintered Lap-Shear Joint at Elevated Temperature
,”
Microelectron. Reliab.
,
54
(
3
), pp.
648
653
.10.1016/j.microrel.2013.12.007
4.
Yao
,
P.
, and
Li
,
X.
,
2020
, “
Investigation on Shear Fracture of Different Strain Rates for Cu/Cu3Sn/Cu Solder Joints Derived From Cu–15 μm Sn–Cu Sandwich Structure
,”
J. Mater. Sci.: Mater. Electron.
,
31
(
4
), pp.
2862
2876
.10.1007/s10854-019-02831-7
5.
Yang
,
G.
,
Li
,
X.
,
Ren
,
E.
, and
Li
,
S.
,
2022
, “
Morphology Evolution and Grain Orientations of Intermetallic Compounds During the Formation of Full Cu3Sn Joint
,”
Intermetallics
,
145
, p.
107555
.10.1016/j.intermet.2022.107555
6.
Ishiko
,
M.
,
2004
, “
Recent R&D Activities of Power Devices for Hybrid Electric Vehicles
,”
Tech. J. R&D Rev.
,
39
(
4
), pp.
1
5
.https://www.tytlabs.co.jp/en/english/review/rev394epdf/e394_001ishiko.pdf
7.
Buttay
,
C.
,
Planson
,
D.
,
Allard
,
B.
,
Bergogne
,
D.
,
Bevilacqua
,
P.
,
Joubert
,
C.
,
Lazar
,
M.
,
Martin
,
C.
,
Morel
,
H.
,
Tournier
,
D.
, and
Raynaud
,
C.
,
2011
, “
State of the Art of High Temperature Power Electronics
,”
Mater. Sci. Eng. B
,
176
(
4
), pp.
283
288
.10.1016/j.mseb.2010.10.003
8.
Roccaforte
,
F.
,
Fiorenza
,
P.
,
Greco
,
G.
,
Vivona
,
M.
,
Nigro
,
R. L.
,
Giannazzo
,
F.
,
Patti
,
A.
, and
Saggio
,
M.
,
2014
, “
Recent Advances on Dielectrics Technology for SiC and GaN Power Devices
,”
Appl. Surf. Sci.
,
301
, pp.
9
18
.10.1016/j.apsusc.2014.01.063
9.
Zhao
,
H.
,
Liu
,
J.
,
Li
,
Z.
,
Zhao
,
Y.
,
Niu
,
H.
,
Song
,
X.
, and
Dong
,
H. J.
,
2017
, “
Non-Interfacial Growth of Cu3Sn in Cu/Sn/Cu Joints During Ultrasonic-Assisted Transient Liquid Phase Soldering Process
,”
Mater. Lett.
,
186
, pp.
283
288
.10.1016/j.matlet.2016.10.017
10.
Han
,
X.
,
Li
,
X.
, and
Yao
,
P.
,
2022
, “
Microstructures Evolution and Growth Kinetics of Intermetallic Compounds in Cu/Sn/Cu System During Ultrasonic Soldering Process
,”
Soldering Surf. Mount Technol.
,
34
(
2
), pp.
79
87
.10.1108/SSMT-06-2021-0034
11.
Lin
,
K.
,
Ling
,
H.
,
Hu
,
A.
,
Wu
,
Y.
,
Gao
,
L.
,
Hang
,
T.
, and
Li
,
M.
,
2021
, “
Growth Behavior and Formation Mechanism of Porous Cu3Sn in Cu/Sn Solder System
,”
Mater. Charact.
,
178
, p.
111271
.10.1016/j.matchar.2021.111271
12.
Chiu
,
W. L.
,
Liu
,
C. M.
,
Haung
,
Y. S.
, and
Chen
,
C.
,
2014
, “
Formation of Nearly Void-Free Cu3Sn Intermetallic Joints Using Nanotwinned Cu Metallization
,”
Appl. Phys. Lett.
,
104
(
17
), p.
171902
.10.1063/1.4874608
13.
Yang
,
G.
,
Li
,
X.
,
Han
,
X.
,
Zhang
,
H.
,
Wen
,
L.
, and
Li
,
S.
,
2022
, “
Microstructure Evolution and Mechanical Properties Changes During the Formation of Full Cu41Sn11 Joint in High-Temperature Electronic Packaging
,”
Microelectron. Reliab.
,
130
, p.
114481
.10.1016/j.microrel.2022.114481
14.
Hu
,
T.
,
Chen
,
H.
,
Li
,
M.
, and
Wang
,
C.
,
2017
, “
Microstructure Evolution and Thermostability of Bondline Based on Cu@Sn Core-Shell Structured Microparticles Under High-Temperature Conditions
,”
Mater. Des.
,
131
, pp.
196
203
.10.1016/j.matdes.2017.06.022
15.
Liu
,
J.
,
Zhao
,
H.
,
Li
,
Z.
,
Song
,
X.
,
Zhao
,
Y.
,
Niu
,
H.
,
Tian
,
H.
,
Dong
,
H.
, and
Feng
,
J.
,
2018
, “
Microstructure Evolution, Grain Morphology Variation and Mechanical Property Change of Cu–Sn Intermetallic Joints Subjected to High-Temperature Aging
,”
Mater. Charact.
,
135
, pp.
238
244
.10.1016/j.matchar.2017.11.037
16.
Sun
,
L.
,
Chen
,
M. H.
, and
Zhang
,
L.
,
2019
, “
Microstructure Evolution and Grain Orientation of IMC in Cu-Sn TLP Bonding Solder Joints
,”
J. Alloys Compd.
,
786
, pp.
677
687
.10.1016/j.jallcom.2019.01.384
17.
Yao
,
P.
,
Li
,
X.
,
Han
,
X.
, and
Xu
,
L.
,
2019
, “
Shear Strength and Fracture Mechanism for Full Cu–Sn IMCs Solder Joints With Different Cu3Sn Proportion and Joints With Conventional Interfacial Structure in Electronic Packaging
,”
Soldering Surf. Mount Technol.
,
31
(
1
), pp.
6
19
.10.1108/SSMT-06-2018-0018
18.
Shao
,
H.
,
Wu
,
A.
,
Bao
,
Y.
,
Zhao
,
Y.
,
Zou
,
G.
, and
Liu
,
L.
,
2018
, “
Microstructure Evolution and Mechanical Properties of Cu/Sn/Ag TLP-Bonded Joint During Thermal Aging
,”
Mater. Charact.
,
144
, pp.
469
478
.10.1016/j.matchar.2018.07.041
19.
Bosco
,
N.
, and
Zok
,
F. W.
,
2005
, “
Strength of Joints Produced by Transient Liquid Phase Bonding in the Cu–Sn System
,”
Acta Mater.
,
53
(
7
), pp.
2019
2027
.10.1016/j.actamat.2005.01.013
20.
Kim
,
H. J.
, and
Kim
,
D. E.
,
2013
, “
Effects of Proximity on Hardness and Elastic Modulus Measurements of SiO2 and Cu by Nanoindentation
,”
Tribol. Lett.
,
49
(
1
), pp.
85
94
.10.1007/s11249-012-0050-5
21.
Yang
,
C.
,
Song
,
F.
, and
Lee
,
S.
,
2011
, “
Effect of Interfacial Strength Between Cu6Sn5 and Cu3Sn Intermetallics on the Brittle Fracture Failure of Lead-Free Solder Joints With OSP Pad Finish
,” 2011 IEEE 61st Electronic Components and Technology Conference (
ECTC
),
Lake Buena Vista, FL
, May 31–June 3, pp.
971
978
.10.1109/ECTC.2011.5898627
22.
Koo
,
J. M.
, and
Jung
,
S. B.
,
2007
, “
Effect of Displacement Rate on Ball Shear Properties for Sn-37Pb and Sn-3.5Ag BGA Solder Joints During Isothermal Aging
,”
Microelectron. Reliab.
,
47
(
12
), pp.
2169
2178
.10.1016/j.microrel.2006.09.043
23.
Hu
,
X.
,
Xu
,
T.
,
Keer
,
L. M.
,
Li
,
Y.
, and
Jiang
,
X.
,
2017
, “
Shear Strength and Fracture Behavior of Reflowed Sn3.0Ag0.5Cu/Cu Solder Joints Under Various Strain Rates
,”
J. Alloys Compd.
,
690
, pp.
720
729
.10.1016/j.jallcom.2016.08.168
24.
Rhee
,
H.
,
Subramanian
,
K.
,
Lee
,
A.
, and
Lee
,
J. J.
,
2003
, “
Mechanical Characterization of Sn‐3.5Ag Solder Joints at Various Temperatures
,”
Soldering Surf. Mount Technol.
,
15
(
3
), pp.
21
26
.10.1108/09540910310505080
You do not currently have access to this content.