Abstract

Continuous power density increases and interconnect scaling in electronic packages raises risk of electromigration (EM) induced failures in high current interconnects. Concurrently, thermal cycling fatigue also places interconnects at risk of reliability failure during electronics' operating lifetime. These two differing failure mechanisms are historically treated separately, but in operation, the combination of EM effects and thermal cycling can act synchronously in accelerating failure. Presently, there is no model to predict the complexity of reliability estimation arising from these interacting failure modes but is certainly important for high current density applications. In this work, a novel testing system has been employed to facilitate the estimation of the reliability of solder interconnects under the combined influence of EM and mechanical strain. The system subjects solder interconnects to high current density, elevated ambient temperature, and a constant tensile stress while recording the change in electrical resistance and change in length of the solder over time. The solder samples were created using two copper wires connected by a eutectic Pb/Sn solder ball to imitate flip-chip or BGA packaging interconnects, allowing for controlled testing conditions in order to demonstrate the combined effects of a mechanical load and EM on the lifetime of a solder joint. A significant reduction in lifetime was observed for samples that endured the coupled accelerating factors. Comparing the experimental results of different current densities at different stress levels provided a new outlook on the nature of coupled failure acceleration in solders. This novel test methodology can inform model generation for better anticipating the failure rate of solder interconnects which naturally experience multiple stress inputs during their lifetime.

References

1.
Guinn
,
K. V.
, and
Frye
,
R. C.
,
1997
, “
Flip-Chip and Chip-Scale I/O Density Requirements and Printed Wiring Board Capabilities
,”
Proceedings - Electronic Components and Technology Conference
, San Jose, CA, May 18–21, pp.
649
655
.10.1109/ECTC.1997.606240
2.
Liu
,
X.
,
Haque
,
S.
,
Wang
,
J.
, and
Lu
,
G. Q.
,
2000
, “
Packaging of Integrated Power Electronics Modules Using Flip-Chip Technology
,”
Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC
, Vol.
1
, New Orleans, LA, Feb. 6–10, pp.
290
296
.10.1109/APEC.2000.826118
3.
Gan
,
H.
,
Choi
,
W. J.
,
Xu
,
G.
, and
Tu
,
K. N.
,
2002
, “
Electromigration in Solder Joints and Solder Lines
,”
JOM
,
54
(
6
), pp.
34
37
.10.1007/BF02701847
4.
Black
,
J. R.
,
1969
, “
Electromigration—A Brief Survey and Some Recent Results
,”
IEEE Trans. Electron Devices
,
16
(
4
), pp.
338
347
.10.1109/T-ED.1969.16754
5.
Chae
,
S. H.
,
Zhang
,
X.
,
Lu
,
K. H.
,
Chao
,
H. L.
,
Ho
,
P. S.
,
Ding
,
M.
,
Su
,
P.
,
Uehling
,
T.
, and
Ramanathan
,
L. N.
,
2006
, “
Electromigration Statistics and Damage Evolution for Pb-Free Solder Joints With Cu and Ni UBM in Plastic Flip-Chip Packages
,”
J. Mater. Sci.: Mater. Electron.
,
18
(
1–3
), pp.
247
258
.10.1007/s10854-006-9026-2
6.
Nah
,
J. W.
,
Paik
,
K. W.
,
Suh
,
J. O.
, and
Tu
,
K. N.
,
2003
, “
Mechanism of Electromigration-Induced Failure in the 97Pb-3Sn and 37Pb-63Sn Composite Solder Joints
,”
J. Appl. Phys.
,
94
(
12
), p.
7560
.10.1063/1.1628388
7.
Liu
,
C. Y.
,
Ke
,
L.
,
Chuang
,
Y. C.
, and
Wang
,
S. J.
,
2006
, “
Study of Electromigration-Induced Cu Consumption in the Flip-Chip SnCu Solder Bumps
,”
J. Appl. Phys.
,
100
(
8
), p.
083702
.10.1063/1.2357860
8.
Xu
,
L.
,
Han
,
J. K.
,
Liang
,
J. J.
,
Tu
,
K. N.
, and
Lai
,
Y. S.
,
2008
, “
Electromigration Induced High Fraction of Compound Formation in SnAgCu Flip Chip Solder Joints With Copper Column
,”
Appl. Phys. Lett.
,
92
(
26
), p.
262104
.10.1063/1.2953692
9.
Chang
,
Y. W.
,
Liang
,
S. W.
, and
Chen
,
C.
,
2006
, “
Study of Void Formation Due to Electromigration in Flip-Chip Solder Joints Using Kelvin Bump Probes
,”
Appl. Phys. Lett.
,
89
(
3
), p.
032103
.10.1063/1.2226989
10.
Huang
,
Y. L.
,
Lin
,
K. L.
, and
Liu
,
D. S.
,
2008
, “
The Micro-Impact Fracture Behavior of Lead-Free Solder Ball Joints
,”
J. Mater. Res.
,
23
(
4
), pp.
1057
1063
.10.1557/jmr.2008.0129
11.
Goyal
,
D.
,
Lane
,
T.
,
Kinzie
,
P.
,
Panichas
,
C.
,
Chong
,
K. M.
, and
Villalobos
,
O.
,
2002
, “
Failure Mechanism of Brittle Solder Joint Fracture in the Presence of Electroless Nickel Immersion Gold (ENIG) Interface
,”
Proceedings - Electronic Components and Technology Conference
, San Diego, CA, May 28–31, pp.
732
739
.10.1109/ECTC.2002.1008179
12.
Frear
,
D. R.
,
1989
, “
Thermomechanical Fatigue of Solder Joints: A New Comprehensive Test Method
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
12
(
4
), pp.
492
501
.10.1109/33.49006
13.
Zhang
,
B.
,
Jabarullah
,
N. H.
,
Alkaim
,
A. F.
,
Danshina
,
S.
,
Krasnopevtseva
,
I. v.
,
Zheng
,
Y.
, and
Geetha
,
N.
,
2021
, “
Thermomechanical Fatigue Lifetime Evaluation of Solder Joints in Power Semiconductors Using a Novel Energy Based Modeling
,”
Soldering Surf. Mount Technol.
,
33
(
3
), pp.
187
194
.10.1108/SSMT-06-2020-0028
14.
Dalleau
,
D.
, and
Weide-Zaage
,
K.
,
2001
, “
Three-Dimensional Voids Simulation in Chip Metallization Structures: A Contribution to Reliability Evaluation
,”
Microelectron. Reliab.
,
41
(
9–10
), pp.
1625
1630
.10.1016/S0026-2714(01)00151-2
15.
Zuo
,
Y.
,
Ma
,
L.
,
Guo
,
F.
,
Qiao
,
L.
,
Shu
,
Y.
,
Lee
,
A.
, and
Subramanian
,
K. N.
,
2014
, “
Effects of Electromigration on the Creep and Thermal Fatigue Behavior of Sn58Bi Solder Joints
,”
J. Electron. Mater.
,
43
(
12
), pp.
4395
4405
.10.1007/s11664-014-3345-5
16.
Zuo
,
Y.
,
Bieler
,
T. R.
,
Zhou
,
Q.
,
Ma
,
L.
, and
Guo
,
F.
,
2018
, “
Electromigration and Thermomechanical Fatigue Behavior of Sn0.3Ag0.7Cu Solder Joints
,”
J. Electron. Mater.
,
47
(
3
), pp.
1881
1895
.10.1007/s11664-017-5980-0
17.
Ma
,
L.
,
Zuo
,
Y.
,
Liu
,
S.
,
Guo
,
F.
, and
Wang
,
X.
,
2013
, “
The Failure Models of Sn-Based Solder Joints Under Coupling Effects of Electromigration and Thermal Cycling
,”
J. Appl. Phys.
,
113
(
4
), p.
044904
.10.1063/1.4789023
18.
Pharr
,
M.
,
Zhao
,
K.
,
Suo
,
Z.
,
Ouyang
,
F. Y.
, and
Liu
,
P.
,
2011
, “
Concurrent Electromigration and Creep in Lead-Free Solder
,”
J. Appl. Phys.
,
110
(
8
), p.
083716
.10.1063/1.3656002
19.
Cui
,
Z.
,
Fan
,
X.
, and
Zhang
,
G.
,
2019
, “
General Coupling Model for Electromigration and One-Dimensional Numerical Solutions
,”
J. Appl. Phys.
,
125
(
10
), p.
105101
.10.1063/1.5065376
20.
Chen
,
W. J.
,
Lee
,
Y. L.
,
Wu
,
T. Y.
,
Chen
,
T. C.
,
Hsu
,
C. H.
, and
Lin
,
M. T.
,
2018
, “
Effects of Electrical Current and External Stress on the Electromigration of Intermetallic Compounds Between the Flip-Chip Solder and Copper Substrate
,”
J. Electron. Mater.
,
47
(
1
), pp.
35
48
.10.1007/s11664-017-5685-4
21.
Ren
,
F.
,
Nah
,
J. W.
,
Tu
,
K. N.
,
Xiong
,
B.
,
Xu
,
L.
, and
Pang
,
J. H.
,
2006
, “
Electromigration Induced Ductile-to-Brittle Transition in Lead-Free Solder Joints
,”
Appl. Phys. Lett.
,
89
(
14
), p.
141914
.10.1063/1.2358113
22.
Suhir
,
E.
,
2001
, “
Analysis of Interfacial Thermal Stresses in a Trimaterial Assembly
,”
J. Appl. Phys.
,
89
(
7
), pp.
3685
3694
.10.1063/1.1350623
You do not currently have access to this content.