Abstract

Exact assessment of self-heating is of great importance to the thermal management of electronic devices, especially when completely considering the cross-scale heat conduction process. The existing simulation methods are either based on convectional Fourier's law or limited to small system sizes, making it difficult to deal with noncontinuum thermal transport efficiently. In this paper, a hybrid phonon Monte Carlo diffusion method is adopted to predict device temperature in ballistic–diffusive regime. Heat conduction around the heat generation region and boundaries are simulated by phonon Monte Carlo (MC) method, while the other domain is by Fourier's law. The temperature of the hybrid method is higher than that of Fourier's law owing to phonon ballistic transport, and the calculation efficiency of the hybrid method is remarkably improved compared with phonon MC simulation. Furthermore, the simulation results indicate that the way of modeling self-heating has a remarkable impact on phonon transport. The junction temperature of the heat source (HS) scheme can be larger than that of the heat flux (HF) scheme, which is opposite to the result under Fourier's law. In the HS scheme, the enhanced phonon-boundary scattering counteracts the broadening of the heat source, leading to a stronger ballistic effect and higher temperatures. The conclusion is verified by a one-dimensional analytical model. This work has opened up an opportunity for the fast and extensive thermal simulations of cross-scale heat transfer in electronic devices and highlighted the influence of heating schemes.

References

1.
Mishra
,
U. K.
,
Parikh
,
P.
, and
Wu
,
Y.
,
2002
, “
AlGaN/GaN HEMTs - An Overview of Device Operation and Applications
,”
Proc. IEEE
,
90
, pp.
1022
1031
.10.1109/JPROC.2002.1021567
2.
Hirama
,
K.
,
Kasu
,
M.
, and
Taniyasu
,
Y.
,
2012
, “
RF High-Power Operation of AlGaN/GaN HEMTs Epitaxially Grown on Diamond
,”
IEEE Electron Device Lett.
,
33
(
4
), pp.
513
515
.10.1109/LED.2012.2185678
3.
Bar-Cohen
,
A.
,
Albrecht
,
J.
, and
Maurer
,
J.
,
2011
, “
Near-Junction Thermal Management for Wide Bandgap Devices
,”
IEEE Compound Semiconductor Integrated Circuit Symposium
, Waikoloa, HI, Oct. 16–19, pp.
1
5
.10.1109/CSICS.2011.6062454
4.
Zanoni
,
E.
,
Meneghesso
,
G.
,
Verzellesi
,
G.
,
Danesin
,
F.
,
Meneghini
,
M.
,
Rampazzo
,
F.
,
Tazzoli
,
A.
, and
Zanon
,
F.
,
2007
, “
A Review of Failure Modes and Mechanisms of GaN-Based HEMTs
,”
IEEE International Electron Devices Meeting
, Washington, DC, Dec. 10–12, pp.
381
384
.10.1109/IEDM.2007.4418952
5.
Meneghesso
,
G.
,
Verzellesi
,
G.
,
Danesin
,
F.
,
Rampazzo
,
F.
,
Zanon
,
F.
,
Tazzoli
,
A.
,
Meneghini
,
M.
, and
Zanoni
,
E.
,
2008
, “
Reliability of GaN High-Electron-Mobility Transistors: State of the Art and Perspectives
,”
IEEE Trans. Device Mater. Reliab.
,
8
(
2
), pp.
332
343
.10.1109/TDMR.2008.923743
6.
Stocco
,
A.
,
2012
, “
Reliability and Failure Mechanisms of GaN HEMT Devices Suitable for High-Frequency and High-Power Applications
,”
Ph.D. thesis
,
University of Padua
, Veneto Region, Italy.https://www.semanticscholar.org/paper/Reliability-and-failure-mechanisms-of-GaN-HEMT-for-Stocco/693e41c10079a3d0403e800475ca1b68d8871566
7.
Bagnall
,
K. R.
,
2013
, “
Device-Level Thermal Analysis of GaN-Based Electronics
,”
Master's thesis
,
Massachusetts Institute of Technology
, Cambridge, MA.http://hdl.handle.net/1721.1/81733
8.
Paine
,
B.
,
Polmanter
,
S.
,
Ng
,
V.
,
Kubota
,
N.
, and
Ignacio
,
C.
,
2015
, “
Lifetesting GaN HEMTs With Multiple Degradation Mechanisms
,”
IEEE Trans. Device Mater. Reliab.
,
15
(
4
), pp.
486
494
.10.1109/TDMR.2015.2474359
9.
Sridharan
,
S.
,
Venkatachalam
,
A.
, and
Yoder
,
P. D.
,
2008
, “
Electrothermal Analysis of AlGaN/GaN High Electron Mobility Transistors
,”
J. Comput. Electron.
,
7
(
3
), pp.
236
239
.10.1007/s10825-008-0210-x
10.
Donmezer
,
N.
, and
Graham
,
S.
,
2014
, “
The Impact of Noncontinuum Thermal Transport on the Temperature of AlGaN/GaN HFETs
,”
IEEE Trans. Electron Devices
,
61
(
6
), pp.
2041
2048
.10.1109/TED.2014.2318672
11.
Donmezer
,
N.
,
Islam
,
M.
,
Yoder
,
D.
, and
Graham
,
S.
,
2015
, “
The Impact of Nongray Thermal Transport on the Temperature of AlGaN/GaN HFETs
,”
IEEE Trans. Electron Devices
,
62
(
8
), pp.
2437
2444
.10.1109/TED.2015.2443859
12.
Chatterjee
,
B.
,
Dundar
,
C.
,
Beechem
,
T. E.
,
Heller
,
E.
,
Kendig
,
D.
,
Kim
,
H.
,
Donmezer
,
N.
, and
Choi
,
S.
,
2020
, “
Nanoscale Electro-Thermal Interactions in AlGaN/GaN High Electron Mobility Transistors
,”
J. Appl. Phys.
,
127
(
4
), p.
044502
.10.1063/1.5123726
13.
Kennedy
,
D. P.
,
1960
, “
Spreading Resistance in Cylindrical Semiconductor Devices
,”
J. Appl. Phys.
,
31
(
8
), pp.
1490
1497
.10.1063/1.1735869
14.
Won
,
Y.
,
Cho
,
J.
,
Agonafer
,
D.
,
Asheghi
,
M.
, and
Goodson
,
K.
,
2013
, “
Cooling Limits for GaN HEMT Technology
,”
IEEE Compound Semiconductor Integrated Circuit Symposium
, Monterey, CA, Oct. 13–16, pp.
1
5
.10.1109/CSICS.2013.6659222
15.
Moore
,
A. L.
, and
Shi
,
L.
,
2014
, “
Emerging Challenges and Materials for Thermal Management of Electronics
,”
Mater. Today
,
17
(
4
), pp.
163
174
.10.1016/j.mattod.2014.04.003
16.
Won
,
Y.
,
Cho
,
J.
,
Agonafer
,
D.
,
Asheghi
,
M.
, and
Goodson
,
K.
,
2015
, “
Fundamental Cooling Limits for High Power Density Gallium Nitride Electronics
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
5
, pp.
737
744
.10.1109/TCPMT.2015.2433132
17.
Garimella
,
S. V.
,
Persoons
,
T.
,
Weibel
,
J. A.
, and
Gektin
,
V.
,
2017
, “
Electronics Thermal Management in Information and Communications Technologies: Challenges and Future Directions
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
7
(
8
), pp.
1191
1205
.10.1109/TCPMT.2016.2603600
18.
Fourier
,
J.
,
2009
,
The Analytical Theory of Heat
,
Cambridge University Press, Cambridge
, UK.
19.
Krane
,
M. J. M.
,
1991
, “
Constriction Resistance in Rectangular Bodies
,”
ASME J. Electron Packag.
,
113
(
4
), pp.
392
396
.10.1115/1.2905425
20.
Muzychka
,
Y. S.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2003
, “
Thermal Spreading Resistance of Eccentric Heat Sources on Rectangular Flux Channels
,”
ASME J. Electron Packag.
,
125
(
2
), pp.
178
185
.10.1115/1.1568125
21.
Darwish
,
A. M.
,
Bayba
,
A. J.
, and
Hung
,
H. A.
,
2004
, “
Thermal Resistance Calculation of AlGaN-GaN Devices
,”
IEEE Trans. Microwave Theory Tech.
,
52
(
11
), pp.
2611
2620
.10.1109/TMTT.2004.837200
22.
Muzychka
,
Y. S.
,
Bagnall
,
K. R.
, and
Wang
,
E. N.
,
2013
, “
Thermal Spreading Resistance and Heat Source Temperature in Compound Orthotropic Systems With Interfacial Resistance
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
3
(
11
), pp.
1826
1841
.10.1109/TCPMT.2013.2269273
23.
Gholami
,
A.
, and
Bahrami
,
M.
,
2014
, “
Thermal Spreading Resistance Inside Anisotropic Plates With Arbitrarily Located Hotspots
,”
J. Thermophys. Heat Transfer
,
28
(
4
), pp.
679
686
.10.2514/1.T4428
24.
Bagnall
,
K. R.
,
Muzychka
,
Y. S.
, and
Wang
,
E. N.
,
2014
, “
Analytical Solution for Temperature Rise in Complex Multilayer Structures With Discrete Heat Sources
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
4
(
5
), pp.
817
830
.10.1109/TCPMT.2014.2299766
25.
Darwish
,
A.
,
Bayba
,
A. J.
, and
Hung
,
H. A.
,
2015
, “
Channel Temperature Analysis of GaN HEMTs With Nonlinear Thermal Conductivity
,”
IEEE Trans. Electron Devices
,
62
(
3
), pp.
840
846
.10.1109/TED.2015.2396035
26.
Pearson
,
R.
,
Chatterjee
,
B.
,
Kim
,
S.
,
Graham
,
S.
,
Rattner
,
A.
, and
Choi
,
S.
,
2020
, “
Guidelines for Reduced-Order Thermal Modeling of Multifinger GaN HEMTs
,”
ASME J. Electron. Packag.
,
142
(
2
) p.
021012
.10.1115/1.4046620
27.
Pop
,
E.
,
Sinha
,
S.
, and
Goodson
,
K. E.
,
2006
, “
Heat Generation and Transport in Nanometer-Scale Transistors
,”
Proc. IEEE
,
94
(
8
), pp.
1587
1601
.10.1109/JPROC.2006.879794
28.
Cahill
,
D. G.
,
Braun
,
P. V.
,
Chen
,
G.
,
Clarke
,
D. R.
,
Fan
,
S.
,
Goodson
,
K. E.
,
Keblinski
,
P.
,
King
,
W. P.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Phillpot
,
S. R.
,
Pop
,
E.
, and
Shi
,
L.
,
2014
, “
Nanoscale Thermal Transport. II. 2003–2012
,”
Appl. Phys. Rev.
,
1
(
1
), p.
011305
.10.1063/1.4832615
29.
Warzoha
,
R. J.
,
Wilson
,
A. A.
,
Donovan
,
B. F.
,
Donmezer
,
N.
,
Giri
,
A.
,
Hopkins
,
P. E.
,
Choi
,
S.
,
Pahinkar
,
D.
,
Shi
,
J.
,
Graham
,
S.
,
Tian
,
Z.
, and
Ruppalt
,
L.
,
2021
, “
Applications and Impacts of Nanoscale Thermal Transport in Electronics Packaging
,”
ASME J. Electron. Packag.
,
143
(
2
), p.
020804
.10.1115/1.4049293
30.
Ma
,
J. L.
,
Wang
,
X. J.
,
Huang
,
B. L.
, and
Luo
,
X. B.
,
2013
, “
Effects of Point Defects and Dislocations on Spectral Phonon Transport Properties of Wurtzite GaN
,”
J. Appl. Phys.
,
114
(
7
), p.
074311
.10.1063/1.4817083
31.
Freedman
,
J. P.
,
Leach
,
J. H.
,
Preble
,
E. A.
,
Sitar
,
Z.
,
Davis
,
R. F.
, and
Malen
,
J. A.
,
2013
, “
Universal Phonon Mean Free Path Spectra in Crystalline Semiconductors at High Temperature
,”
Sci. Rep.
,
3
(
1
), p.
2963
.10.1038/srep02963
32.
Ziade
,
E.
,
Yang
,
J.
,
Brummer
,
G.
,
Nothern
,
D.
,
Moustakas
,
T.
, and
Schmidt
,
A. J.
,
2017
, “
Thickness Dependent Thermal Conductivity of Gallium Nitride
,”
Appl. Phys. Lett.
,
110
(
3
), p.
031903
.10.1063/1.4974321
33.
Chen
,
G.
,
1998
, “
Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
,
57
(
23
), pp.
14958
14973
.10.1103/PhysRevB.57.14958
34.
Maznev
,
A. A.
,
Cuffe
,
J.
,
Eliason
,
J. K.
,
Minnich
,
A. J.
,
Kehoe
,
T.
,
Torres
,
C. M. S.
,
Chen
,
G.
,
Nelson
,
K. A.
, and
Johnson
,
J. A.
,
2013
, “
Direct Measurement of Room-Temperature Nondiffusive Thermal Transport Over Micron Distances in a Silicon Membrane
,”
Phys. Rev. Lett.
,
110
(
2
), p.
025901
.10.1103/PhysRevLett.110.025901
35.
Chen
,
G.
,
1996
, “
Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles
,”
ASME J. Heat Transfer-Trans. ASME
,
118
(
3
), pp.
539
545
.10.1115/1.2822665
36.
Schleeh
,
J.
,
Mateos
,
J.
,
Íñiguez-de-la Torre
,
I.
,
Wadefalk
,
N.
,
Nilsson
,
P. A.
,
Grahn
,
J.
, and
Minnich
,
A. J.
,
2015
, “
Phonon Black-Body Radiation Limit for Heat Dissipation in Electronics
,”
Nat. Mater.
,
14
(
2
), pp.
187
192
.10.1038/nmat4126
37.
Hua
,
Y. C.
, and
Cao
,
B. Y.
,
2014
, “
Phonon Ballistic-Diffusive Heat Conduction in Silicon Nanofilms by Monte Carlo Simulations
,”
Int. J. Heat Mass Transfer
,
78
, pp.
755
759
.10.1016/j.ijheatmasstransfer.2014.07.037
38.
Li
,
H. L.
, and
Cao
,
B. Y.
,
2019
, “
Radial Ballistic-Diffusive Heat Conduction in Nanoscale
,”
Nanoscale Microscale Thermophys. Eng.
,
23
(
1
), pp.
10
24
.10.1080/15567265.2018.1520763
39.
Cao
,
B. Y.
, and
Li
,
Y. W.
,
2010
, “
A Uniform Source-and-Sink Scheme for Calculating Thermal Conductivity by Nonequilibrium Molecular Dynamics
,”
J. Chem. Phys.
,
133
(
2
), p.
024106
.
40.
Li
,
Y. W.
, and
Cao
,
B. Y.
,
2013
, “
Thermal Conductivity of Single-Walled Carbon Nanotube With Internal Heat Source Studied by Molecular Dynamics Simulation
,”
Int. J. Thermophys.
,
34
(
12
), pp.
2361
2370
.10.1007/s10765-011-1004-0
41.
Hua
,
Y. C.
, and
Cao
,
B. Y.
,
2016
, “
The Effective Thermal Conductivity of Ballistic-Diffusive Heat Conduction in Nanostructures With Internal Heat Source
,”
Int. J. Heat Mass Transfer
,
92
, pp.
995
1003
.10.1016/j.ijheatmasstransfer.2015.09.068
42.
Hua
,
Y. C.
, and
Cao
,
B. Y.
,
2016
, “
Ballistic-Diffusive Heat Conduction in Multiply-Constrained Nanostructures
,”
Int. J. Therm. Sci.
,
101
, pp.
126
132
.10.1016/j.ijthermalsci.2015.10.037
43.
Hua
,
Y. C.
,
Li
,
H. L.
, and
Cao
,
B. Y.
,
2019
, “
Thermal Spreading Resistance in Ballistic-Diffusive Regime for GaN HEMTs
,”
IEEE Trans. Electron Devices
,
66
(
8
), pp.
3296
3301
.10.1109/TED.2019.2922221
44.
Bao
,
H.
,
Chen
,
J.
,
Gu
,
X. K.
, and
Cao
,
B. Y.
,
2018
, “
A Review of Simulation Methods in Micro/Nanoscale Heat Conduction
,”
ES Energy Environ.
,
1
, pp.
16
55
.10.30919/esee8c149
45.
Choi
,
S.
,
Graham
,
S.
,
Chowdhury
,
S.
,
Heller
,
E. R.
,
Tadjer
,
M. J.
,
Moreno
,
G.
, and
Narumanchi
,
S.
,
2021
, “
A Perspective on the Electro-Thermal co-Design of Ultra-Wide Bandgap Lateral Devices
,”
Appl. Phys. Lett.
,
119
(
17
), p.
170501
.10.1063/5.0056271
46.
Hao
,
Q.
,
Zhao
,
H.
, and
Xiao
,
Y.
,
2017
, “
A Hybrid Simulation Technique for Electrothermal Studies of Two-Dimensional GaN-on-SiC High Electron Mobility Transistors
,”
J. Appl. Phys.
,
121
(
20
), p.
204501
.10.1063/1.4983761
47.
Hao
,
Q.
,
Zhao
,
H. B.
,
Xiao
,
Y.
,
Wang
,
Q.
, and
Wang
,
X. L.
,
2018
, “
Hybrid Electrothermal Simulation of a 3-D Fin-Shaped Field-Effect Transistor Based on GaN Nanowires
,”
IEEE Trans. Electron Devices
,
65
(
3
), pp.
921
927
.10.1109/TED.2018.2791959
48.
Hao
,
Q.
,
Zhao
,
H.
,
Xiao
,
Y.
, and
Kronenfeld
,
M. B.
,
2018
, “
Electrothermal Studies of GaN-Based High Electron Mobility Transistors With Improved Thermal Designs
,”
Int. J. Heat Mass Transfer
,
116
, pp.
496
506
.10.1016/j.ijheatmasstransfer.2017.09.048
49.
Li
,
H. L.
,
Hua
,
Y. C.
, and
Cao
,
B. Y.
,
2018
, “
A Hybrid Phonon Monte Carlo-Diffusion Method for Ballistic-Diffusive Heat Conduction in Nano- and Micro- Structures
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1014
1022
.10.1016/j.ijheatmasstransfer.2018.06.080
50.
Li
,
H. L.
,
Shiomi
,
J.
, and
Cao
,
B. Y.
,
2020
, “
Ballistic-Diffusive Heat Conduction in Thin Films by Phonon Monte Carlo Method: Gray Medium Approximation Versus Phonon Dispersion
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
11
), p.
112502
.10.1115/1.4048093
51.
Shen
,
Y.
,
Hua
,
Y. C.
,
Li
,
H. L.
,
Sobolev
,
S. L.
, and
Cao
,
B. Y.
,
2022
, “
Spectral Thermal Spreading Resistance of Wide Bandgap Semiconductors in Ballistic-Diffusive Regime
,”
IEEE Transactions on Electron Devices
, 69(6), pp.
3047
3054
.10.1109/TED.2022.3168798
52.
Hua
,
Y. C.
, and
Cao
,
B. Y.
,
2017
, “
Slip Boundary Conditions in Ballistic-Diffusive Heat Transport in Nanostructures
,”
Nanoscale Microscale Thermophys. Eng.
,
21
(
3
), pp.
159
176
.10.1080/15567265.2017.1344752
53.
Peraud
,
J. P. M.
, and
Hadjiconstantinou
,
N. G.
,
2011
, “
Efficient Simulation of Multidimensional Phonon Transport Using Energy-Based Variance-Reduced Monte Carlo Formulations
,”
Phys. Rev. B
,
84
(
20
), pp.
1555
1569
.10.1103/PhysRevB.84.205331
54.
García
,
S.
,
Íñiguez-de-la-Torre
,
I.
,
Mateos
,
J.
,
González
,
T.
, and
Pérez
,
S.
,
2016
, “
Impact of Substrate and Thermal Boundary resistance on the Performance of AlGaN/GaN HEMTs Analyzed by Means of Electro-Thermal Monte Carlo Simulations
,”
Semicond. Sci. Technol.
,
31
(
6
), p.
065005
.10.1088/0268-1242/31/6/065005
55.
Pohl
,
R. O.
, and
Swartz
,
E. T.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
(
3
), pp.
605
668
.10.1103/RevModPhys.61.605
56.
Hua
,
Y. C.
, and
Cao
,
B. Y.
,
2018
, “
Interface-Based Two-Way Tuning of the in-Plane Thermal Transport in Nanofilms
,”
J. Appl. Phys.
,
123
(
11
), p.
114304
.10.1063/1.5013657
57.
Ran
,
X.
,
Guo
,
Y.
, and
Wang
,
M.
,
2018
, “
Interfacial Phonon Transport With Frequency-Dependent Transmissivity by Monte Carlo Simulation
,”
Int. J. Heat Mass Transfer
,
123
, pp.
616
628
.10.1016/j.ijheatmasstransfer.2018.02.117
58.
Ziabari
,
A.
,
Torres
,
P.
,
Vermeersch
,
B.
,
Xuan
,
Y.
,
Cartoixà
,
X.
,
Torelló
,
A.
,
Bahk
,
J.-H.
,
Koh
,
Y. R.
,
Parsa
,
M.
,
Ye
,
P. D.
,
Alvarez
,
F. X.
, and
Shakouri
,
A.
,
2018
, “
Full-Field Thermal Imaging of Quasiballistic Crosstalk Reduction in Nanoscale Devices
,”
Nat. Commun.
,
9
(
1
), p.
255
.10.1038/s41467-017-02652-4
You do not currently have access to this content.