Abstract

High power electronics are a key component in the electrification of aircraft. Large amounts of power need to be handled onboard to generate sufficient lift for flight. The transient nature of the aircraft's mission profile produces varied loading and environmental influences, making consistent cooling and device reliability difficult to maintain. Due to limitations in weight and performance metrics, the thermal management capability becomes a key inhibiting factor in preventing adoption of all electric aircraft. Many efforts are focused on the improvement of high-powered electronics such as the inverters, batteries, and motors, but there is a need for increased focus on the implications of each improved device on the total system with regard to thermal management. To address the many concerns for thermal management within aviation, this paper will review the prevalent factors of flight and couple them to their respective challenges to highlight the overarching effort needed to successfully integrate efficient electric propulsion devices with their protective thermal management systems. A review will be combined with a brief analytical study over inverter cooling to examine the effects of various transient parameters on the device temperature of an inverter in flight. The impact of failure in the cooling systems on the shutdown process will also be examined. Both studies are tied to the motivation for examining the impacts of new and transient challenges faced by electric power systems and help signify the importance of this focus as these systems become more present and capable within the aviation industry.

References

1.
Chapman
,
J. W.
,
Hasseeb
,
H.
, and
Schnulo
,
S.
,
2020
, “
Thermal Management System Design for Electrified Aircraft Propulsion Concepts
,”
AIAA
Paper No. 2020-3571.10.2154/6.2020-3571
2.
Jafari
,
S.
, and
Nikolaidis
,
T.
,
2018
, “
Thermal Management Systems for Civil Aircraft Engines: Review, Challenges and Exploring the Future
,”
Appl. Sci.
,
8
(
11
), p.
2044
.10.3390/app8112044
3.
Pal
,
D.
, and
Severson
,
M.
,
2017
, “
Liquid Cooled System for Aircraft Power Electronics Cooling
,” Proceedings of the 16th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm 2017
), Orlando, FL, May 30–June 2, pp.
800
805
.10.1109/ITHERM.2017.7992568
4.
Kabir
,
R.
,
Kaddoura
,
K.
,
McCluskey
,
F. P.
, and
Kizito
,
J. P.
,
2018
, “
Investigation of a Cooling System for a Hybrid Airplane
,”
AIAA
Paper No. 2018-4991.10.2154/6.2018-4991
5.
Mahefkey
,
T.
,
Yerkes
,
K.
,
Donovan
,
B.
, and
Ramalingam
,
M. L.
,
2004
, “
Thermal Management Challenges for Future Military Aircraft Power Systems
,”
SAE
Paper No. 2004-01-3204.10.4271/2004-01-3204
6.
van Heerden
,
A. S.
,
D. M.
Judt
,
S.
Jafari
,
C. P.
Lawson
,
T.
Nikolaidis
, and
D.
Bosak
,
2022
, “
Aircraft Thermal Management: Practices, Technology, System Architectures, Future Challenges, and Opportunities
,”
Prog. Aerosp. Sci.
,
128
, p.
100767
.10.1016/j.paerosci.2021.100767
7.
Donateo
,
T.
,
Lucia de Pascalis
,
C.
, and
Ficarella
,
A.
,
2019
, “
Synergy Effects in Electric and Hybrid Electric Aircraft
,”
Aerospace
,
6
(
3
), p.
32
.10.3390/aerospace6030032
8.
Rheaume
,
J. M.
, and
Lentsii
,
C. E.
,
2018
, “
Design and Simulation of a Commercial Hybrid Electric Aircraft Thermal Management System
,”
AIAA
Paper No. 2018-4994.10.2154/6.2018-4994
9.
Ma
,
S.
,
Wang
,
S.
,
Zhang
,
C.
, and
Zhang
,
S.
,
2017
, “
A Method to Improve the Efficiency of an Electric Aircraft Propulsion System
,”
Energy
,
140
, pp.
436
443
.10.1016/j.energy.2017.08.095
10.
Schefer
,
H.
,
Fauth
,
L.
,
Kopp
,
T. H.
,
Mallwitz
,
R.
,
Friebe
,
J.
, and
Kurrat
,
M.
,
2020
, “
Discussion on Electric Power Supply Systems for All Electric Aircraft
,”
IEEE Access
,
8
, pp.
84188
84216
.10.1109/ACCESS.2020.2991804
11.
Jux
,
B.
,
Foitzik
,
S.
, and
Doppelbauer
,
M.
,
2018
, “
A Standard Mission Profile for Hybrid-Electric Regional Aircraft Based on Web Flight Data
,” IEEE International Conference on Power Electronics, Drives and Energy Systems (
PEDES
), Chennai, India, Dec. 18–21, pp.
1
6
.10.1109/PEDES.2018.8707564
12.
Dorn-Gomba
,
L.
,
Ramoul
,
J.
,
Reimers
,
J.
, and
Emadi
,
A.
,
2020
, “
Power Electronic Converters in Electric Aircraft: Current Status, Challenges, and Emerging Technologies
,”
IEEE Trans. Transp. Electrification
,
6
(
4
), pp.
1648
1664
.10.1109/TTE.2020.3006045
13.
Thapa
,
N.
,
Ram
,
S.
,
Kumar
,
S.
, and
Mehta
,
J.
,
2021
, “
All Electric Aircraft: A Reality on Its Way
,”
Mater. Today: Proc.
,
43
, pp.
175
182
.10.1016/j.matpr.2020.11.611
14.
Shahjalal
,
M.
,
2018
, “
Electric-Thermal Modelling of Power Electronics Components
,” University of Greenwich, London, UK.
15.
Byahut
,
S.
, and
Uranga
,
A.
,
2020
, “
Power Distribution and Thermal Management Modeling for Electrified Aircraft
,”
AIAA/IEEE Electric Aircraft Technologies Symposium (EATS)
, New Orleans, LA, Aug. 26–28, p.
20114437
.
16.
J. W.
Chapman
, and
S. L.
Schnulo
,
M. P.
Nitzsche
,
2020
, “
Development of a Thermal Management System for Electrified Aircraft
,” NASA, Glenn Research Center, Cleveland, OH, accessed Feb. 12, 2022, https://ntrs.nasa.gov/api/citations/20200001620/downloads/20200001620.pdf
17.
Shi
,
M.
,
Sanders
,
M.
,
Alahmad
,
A.
,
Perullo
,
C.
,
Cina
,
G.
, and
Mavris
,
D. N.
,
2020
, “
Design and Analysis of the Thermal Management System of a Hybrid Turboelectric Regional Jet for the NASA ULI Program
,” AIAA/IEEE Electric Aircraft Technologies Symposium (
EATS
), New Orleans, LA, Aug. 26–28, p.
20114435
.https://ieeexplore.ieee.org/document/9235174
18.
Bowman
,
C. L.
,
Felder
,
J. L.
, and
Marien
,
T. V.
,
2018
, “
Turbo- and Hybrid-Electrified Aircraft Propulsion Concepts for Commercial Transport
,” AIAA/IEEE Electric Aircraft Technologies Symposium (
EATS
), Cincinnati, OH, July 12–14, p.
18341456
.https://ieeexplore.ieee.org/document/8552831
19.
Riboldi
,
C. E.
, and
Gualdoni
,
F.
,
2016
, “
An Integrated Approach to the Preliminary Weight Sizing of Small Electric Aircraft
,”
Aerosp. Sci. Technol.
,
58
, pp.
134
149
.10.1016/j.ast.2016.07.014
20.
Kellermann
,
H.
,
Lüdemann
,
M.
,
Pohl
,
M.
, and
Hornung
,
M.
,
2020
, “
Design and Optimization of Ram Air-Based Thermal Management Systems for Hybrid-Electric Aircraft
,”
Aerospace
,
8
(
1
), p.
3
.10.3390/aerospace8010003
21.
O'Connell
,
T. C.
,
Lui
,
C.
,
Walia
,
P.
, and
Tschantz
,
J.
,
2010
, “
A Hybrid Economy Bleed, Electric Drive Adaptive Power and Thermal Management System for More Electric Aircraft
,”
SAE Int. J. Aerosp.
,
3
(
1
), pp.
168
172
.10.4271/2010-01-1786
22.
Sousa
,
J.
,
Villafañe
,
L.
, and
Paniagua
,
G.
,
2014
, “
Thermal Analysis and Modeling of Surface Heat Exchangers Operating in the Transonic Regime
,”
Energy
,
64
, pp.
961
969
.10.1016/j.energy.2013.11.032
23.
Abolmoali
,
P.
,
Donovan
,
A.
,
Patnaik
,
S. S.
,
McCarthy
,
P.
,
Dierker
,
D.
,
Jones
,
N.
, and
Buettner
,
R.
,
2020
, “
Integrated Propulsive and Thermal Management System Design for Optimal Hybrid Electric Aircraft Performance
,”
AIAA
Paper No. 2020-3557.10.2154/6.2020-3557
24.
Kellermann
,
H.
,
Luisa Habermann
,
A.
, and
Hornung
,
M.
,
2019
, “
Assessment of Aircraft Surface Heat Exchanger Potential
,”
Aerospace
,
7
(
1
), p.
1
.10.3390/aerospace7010001
25.
Sripad
,
S.
,
Bills
,
A.
, and
Viswanathan
,
V.
,
2021
, “
A Review of Safety Considerations for Batteries in Aircraft With Electric Propulsion
,”
MRS Bull.
,
46
(
5
), pp.
435
442
.10.1557/s43577-021-00097-1
26.
Ravi Annapragada
,
S.
,
M.
Macdonald
,
A.
Sur
,
R.
Mahmoudi
, and
C.
Lents
,
2018
, “
Hybrid Electric Aircraft Battery Heat Acquisition System
,” AIAA/IEEE Electric Aircraft Technologies Symposium (
EATS
), Cincinnati, OH, July 12–14, p.
18341453
.https://ieeexplore.ieee.org/document/8552818
27.
Mohammed
,
A. H.
,
Esmaeeli
,
R.
,
Aliniagerdroudbari
,
H.
,
Alhadri
,
M.
,
Hashemi
,
S. R.
,
Nadkarni
,
G.
, and
Farhad
,
S.
,
2019
, “
Dual-Purpose Cooling Plate for Thermal Management of Prismatic Lithium-Ion Batteries During Normal Operation and Thermal Runaway
,”
Appl. Therm. Eng.
,
160
, p.
114106
.10.1016/j.applthermaleng.2019.114106
28.
Yin
,
S.
,
Tseng
,
K. J.
,
Simanjorang
,
R.
,
Liu
,
Y.
, and
Pou
,
J.
,
2017
, “
A 50-KW High-Frequency and High-Efficiency SiC Voltage Source Inverter for More Electric Aircraft
,”
IEEE Trans. Ind. Electron.
,
64
(
11
), pp.
9124
9134
.10.1109/TIE.2017.2696490
29.
D'Arpino
,
M.
,
Cancian
,
M.
,
Sergent
,
A.
,
Canova
,
M.
, and
Perullo
,
C.
, 2019 “
A Simulation Tool for Turbo-Hybrid-Electric Aircraft Battery Life Prediction for the NASA ULI Program,”
AIAA
Paper No. 2019-4469
.10.2154/6.2019-4469
30.
Modeer
,
T.
,
Pallo
,
N.
,
Foulkes
,
T.
,
Barth
,
C. B.
, and
Pilawa-Podgurski
,
R. C. N.
,
2020
, “
Design of a GaN-Based Interleaved Nine-Level Flying Capacitor Multilevel Inverter for Electric Aircraft Applications
,”
IEEE Trans. Power Electron.
,
35
(
11
), pp.
12153
12165
.10.1109/TPEL.2020.2989329
31.
Abramushkina
,
E.
,
Zhaksylyk
,
A.
,
Geury
,
T.
,
El Baghdadi
,
M.
, and
Hegazy
,
O.
,
2021
, “
A Thorough Review of Cooling Concepts and Thermal Management Techniques for Automotive WBG Inverters: Topology, Technology and Integration Level
,”
Energies
,
14
(
16
), p.
4981
.10.3390/en14164981
32.
McCluskey
,
P.
,
Yonatan Saadon
,
F.
,
Yao
,
Z.
, and
Camacho
,
A.
,
2019
, “
Cooling for Electric Aircraft Motors
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
1134
1138
.10.1109/ITHERM.2019.8757435
33.
Wrobel
,
R.
,
Scholes
,
B.
,
Mustaffer
,
A.
,
Ullah
,
S.
,
Reay
,
D.
,
Mecrow
,
B.
, and
Hussein
,
A.
,
2019
, “
Design and Experimental Characterisation of an Additively Manufactured Heat Exchanger for the Electric Propulsion Unit of a High-Altitude Solar Aircraft
,” IEEE Energy Conversion Congress and Exposition (
ECCE
), Baltimore, MD, Sept. 29–Oct. 3, pp.
753
–7
60
.10.1109/ECCE.2019.8912308
34.
Sixel
,
W.
,
Liu
,
M.
,
Nellis
,
G.
, and
Sarlioglu
,
B.
,
2019
, “
Ceramic 3D Printed Direct Winding Heat Exchangers for Improving Electric Machine Thermal Management
,” IEEE Energy Conversion Congress and Exposition (
ECCE
), Baltimore, MD, Sept. 29–Oct. 3, pp.
769
–7
76
.10.1109/ECCE.2019.8913234
35.
Madonna
,
V.
,
Walker
,
A.
,
Giangrande
,
P.
,
Serra
,
G.
,
Gerada
,
C.
, and
Galea
,
M.
,
2019
, “
Improved Thermal Management and Analysis for Stator End-Windings of Electrical Machines
,”
IEEE Trans. Ind. Electron.
,
66
(
7
), pp.
5057
5069
.10.1109/TIE.2018.2868288
36.
Duffy
,
M.
,
Sevier
,
A.
,
Hupp
,
R.
,
Perdomo
,
E.
, and
Wakayama
,
S.
,
2018
, “
Propulsion Scaling Methods in the Era of Electric Flight
,” AIAA/IEEE Electric Aircraft Technologies Symposium (
EATS
), Cincinnati, OH, July 12–14, Paper No. 18341452.https://ieeexplore.ieee.org/document/8552797
37.
Hendricks
,
T. J.
,
Tarau
,
C.
, and
Dyson
,
R. W.
,
2021
, “
Hybrid Electric Aircraft Thermal Management: Now, New Visions and Future Concepts and Formulation
,” 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, June 1–4, pp.
467
476
.10.1109/ITherm51669.2021.9503205
38.
She
,
X.
,
Huang
,
A. Q.
,
Lucía
,
Ó.
, and
Ozpineci
,
B.
,
2017
, “
Review of Silicon Carbide Power Devices and Their Applications
,”
IEEE Trans. Ind. Electron.
,
64
(
10
), pp.
8193
8205
.10.1109/TIE.2017.2652401
39.
Sarlioglu
,
B.
, and
Morris
,
C. T.
,
2015
, “
More Electric Aircraft: Review, Challenges, and Opportunities for Commercial Transport Aircraft
,”
IEEE Trans. Transp. Electrification
,
1
(
1
), pp.
54
64
.10.1109/TTE.2015.2426499
40.
Feurtado
,
M.
,
Reeves
,
M.
,
Martin
,
D.
, and
McNutt
,
T.
,
2020
, “
Increasing Power Density in Three-Phase Inverters With Direct-Cooled SiC Power Modules
,” Wieland MicroCool, Morgan County, AL, accessed Aug. 24, 2022, https://www.microcooling.com/technology-news/increasing-power-density-in-three-phase-inverters-with-direct-cooled-sic-power-modules/
41.
Sharifi
,
Y.
, and
Al-Safi
,
A.
,
2020
, “
Thermal Transport Investigation of SiC Power Semiconductor Modules
,” Chalmers University of Technology, Gothenburg, Sweden, accessed Mar. 8, 2022, https://odr.chalmers.se/handle/20.500.12380/301177
42.
Wieland Microcool
, 2022, “
Thermal Resistance (C/W)
,” Wieland Microcool, Morgan County, AL, accessed Mar. 31, 2022, https://www.microcooling.com/wp-content/uploads/2020/11/CP4012_datasheet.pdf
You do not currently have access to this content.