Abstract

Physics-based modeling aids in designing efficient data center power and cooling systems. These systems have traditionally been modeled independently under the assumption that the inherent coupling of effects between the systems has negligible impact. This study tests the assumption through uncertainty quantification of models for a typical 300 kW data center supplied through either an alternating current (AC)-based or direct current (DC)-based power distribution system. A novel calculation scheme is introduced that couples the calculations of these two systems to estimate the resultant impact on predicted power usage effectiveness (PUE), computer room air conditioning (CRAC) return temperature, total system power requirement, and system power loss values. A two-sample z-test for comparing means is used to test for statistical significance with 95% confidence. The power distribution component efficiencies are calibrated to available published and experimental data. The predictions for a typical data center with an AC-based system suggest that the coupling of system calculations results in statistically significant differences for the cooling system PUE, the overall PUE, the CRAC return air temperature, and total electrical losses. However, none of the tested metrics are statistically significant for a DC-based system. The predictions also suggest that a DC-based system provides statistically significant lower overall PUE and electrical losses compared to the AC-based system, but only when coupled calculations are used. These results indicate that the coupled calculations impact predicted general energy efficiency metrics and enable statistically significant conclusions when comparing different data center cooling and power distribution strategies.

References

1.
Jones
,
N.
,
2018
, “
How to Stop Data Centres From Gobbling Up the World's Electricity
,”
Nature
,
561
(
7722
), pp.
163
166
.10.1038/d41586-018-06610-y
2.
Shehabi
,
A.
,
Smith
,
S. J.
,
Sartor
,
D. A.
,
Brown
,
R. E.
,
Herrlin
,
M.
,
Koomey
,
J. G.
,
Masanet
,
E. R.
,
Horner
,
N.
,
Azevedo
,
I. L.
, and
Lintner
,
W.
,
2016
, “
United States Data Center Energy Usage Report
,” Lawrence Berkeley National Laboratory, Berkeley, CA, Report No.
Lbnl-1005775.
3.
Masanet
,
E.
,
Shehabi
,
A.
,
Lei
,
N.
,
Smith
,
S.
, and
Koomey
,
J.
,
2020
, “
Recalibrating Global Data Center Energy-Use Estimates
,”
Science
,
367
(
6481
), pp.
984
986
.10.1126/science.aba3758
4.
Shehabi
,
A.
,
Smith
,
S. J.
,
Masanet
,
E.
, and
Koomey
,
J.
, Dec.
2018
, “
Data Center Growth in the United States: Decoupling the Demand for Services From Electricity Use
,”
Environ. Res. Lett
,
13
(
12
), p.
124030
.10.1088/1748-9326/aaec9c
5.
Andrae
,
A.
,
2017
, “
Total Consumer Power Consumption Forecast
,”
Nord. Digit. Bus. Summit
.https://www.researchgate.net/publication/320225452_Total_Consumer_Power_Consumption_Forecast
6.
Abu Bakar Siddik
,
M.
,
Shehabi
,
A.
, and
Marston
,
L.
,
2021
, “
The Environmental Footprint of Data Centers in the United States
,”
Environ. Res. Lett
,
16
(
6
), p.
064017
.10.1088/1748-9326/abfba1
7.
ISO/IEC,
2016
, “
Information Technology—Data Centres—Key Performance Indicators—Part 2: Power Usage Effectiveness (PUE)
,” ISO/IEC, Geneva, Switzerland, Standard No. ISO/IEC 30134-2:2016.
8.
The Green Grid
,
2007
, “
The Green Grid Data Center Power Efficiency Metrics: PUE and DCiE
,” White Paper.https://www.missioncriticalmagazine.com/ext/resources/MC/Home/Files/PDFs/TGG_Data_Center_Power_Efficiency_Metrics_PUE_and_DCiE.pdf
9.
Wemhoff
,
A. P.
,
del Valle
,
M.
,
Abbasi
,
K.
, and
Ortega
,
A.
,
2013
, “
Thermodynamic Modeling of Data Center Cooling Systems
,”
ASME
Paper No. IPACK2013-73116.10.1115/IPACK2013-73116
10.
Future Facilities Ltd., 2021, “6SigmaRoom CFD Software,“ Future Facilities Ltd., London, UK, accessed Aug. 23, 2021, https://www.futurefacilities.com/products/6sigmaroom/
11.
Bhalerao
,
A.
,
Ortega
,
A.
, and
Wemhoff
,
A. P.
,
2014
, “
Thermodynamic Analysis of Hybrid Liquid-Air-Based Data Center Cooling Strategies
,”
ASME
Paper No. IMECE2014-38359.10.1115/IMECE2014-38359
12.
Bhalerao
,
A.
, and
Wemhoff
,
A. P.
,
2015
, “
Thermodynamic Analysis of Full Liquid-Cooled Data Centers
,”
ASME
Paper No. IPACK2015-48439.10.1115/IPACK2015-48439
13.
Bhalerao
,
A.
,
Fouladi
,
K.
,
Silva-Llanca
,
L.
, and
Wemhoff
,
A. P.
,
2016
, “
Rapid Prediction of Exergy Destruction in Data Centers Due to Airflow Mixing
,”
Numer. Heat Transfer Part A Appl.
,
70
(
1
), pp.
48
63
.10.1080/10407782.2016.1139984
14.
Fouladi
,
K.
,
Wemhoff
,
A. P.
,
Silva-Llanca
,
L.
,
Abbasi
,
K.
, and
Ortega
,
A.
,
2017
, “
Optimization of Data Center Cooling Efficiency Using Reduced Order Flow Modeling Within a Flow Network Modeling Approach
,”
Appl. Therm. Eng.
,
124
, pp.
929
939
.10.1016/j.applthermaleng.2017.06.057
15.
Fouladi
,
K.
,
Schaadt
,
J.
, and
Wemhoff
,
A. P.
,
2017
, “
A Novel Approach to the Data Center Hybrid Cooling Design With Containment
,”
Numer. Heat Transfer Part A Appl.
,
71
(
5
), pp.
477
487
.10.1080/10407782.2016.1277932
16.
Khalid
,
R.
, and
Wemhoff
,
A. P.
,
2019
, “
Thermal Control Strategies for Reliable and Energy-Efficient Data Centers
,”
ASME J. Electron. Packag.
,
141
(
4
), p. 041004.10.1115/1.4044129
17.
Fan
,
X.
,
Weber
,
W.-D.
, and
Barroso
,
L. A.
,
2007
, “
Power Provisioning for a Warehouse-Sized Computer
,”
ACM International Symposium on Computer Architecture
, San Diego, CA, June 9–13, pp.
13
23
.https://static.googleusercontent.com/media/research.google.com/en//archive/power_provisioning.pdf
18.
Meisner
,
D.
,
Gold
,
B. T.
, and
Wenisch
,
T. F.
,
2009
, “
PowerNap: Eliminating Server Idle Power
,” Proceeding of 14th International Conference on Architectural Support for Programming Languages and Operating Systems—ASPLOS, Washington, DC, Mar. 7–11, Paper No.
76386
.10.1145/2528521.1508269
19.
Pelley
,
S.
,
Meisner
,
D.
,
Wenisch
,
T. F.
, and
Vangilder
,
J. W.
,
2009
, “
Understanding and Abstracting Total Data Center Power
,”
Work. Energy-Efficient Des.
, University of Michigan, Ann Arbor, MI.https://web.eecs.umich.edu/~twenisch/papers/weed09.pdf
20.
Tran
,
V. G.
,
Debusschere
,
V.
, and
Bacha
,
S.
,
2013
, “
Data Center Energy Consumption Simulator From the Servers to Their Cooling System
,” Proceedings of PowerTech,
IEEE Grenoble
, Grenoble, France, June 16–20, Paper No.
101578
.10.1109/PTC.2013.6652466
21.
Ahmed
,
F.
, and
Wemhoff
,
A. P.
,
2017
, “
Thermodynamic Analysis of Coupled Mechanical and Power Systems in Data Centers
,” Proceedings of ITherm, Orlando, FL, May 30–June 2, Paper No.
129570
.10.1109/ITHERM.2017.7992591
22.
Grid
,
T. G.
,
2008
, “
Quantitative Analysis of Power Distribution Configurations for Data Centers
,” White Paper.https://www.missioncriticalmagazine.com/ext/resources/MC/Home/Files/PDFs/TGG_Qualitative_Analysis_of_Power_Distribution_Configs_for_Data_Centers_WP4_FINAL.pdf
23.
Ahmed
,
F.
,
2018
, “
Development of Components for Data Center Power Distribution Systems and Application of Coupled Mechanical and Power System Calculations
,” Masters' thesis,
Villanova University
, Villanova, PA.
24.
Southern California Edison Design & Engineering Services
,
2007
, “
Efficient Power Supplies for Data Center and Enterprise Servers
,” White Paper.https://www.etcc-ca.com/reports/efficient-power-supplies-data-center-and-enterprise-servers-0
25.
Andersson
,
G.
,
2004
,
Modelling and Analysis of Electric Power Systems
,
Swiss Federal Institute of Technology
,
Zurich, Switzerland
.
26.
American Society of Mechanical Engineers
,
2013
, “
Test Uncertainty—Performance Test Codes
,” ASME, New York, Report No. PTC 19.1.
You do not currently have access to this content.