Abstract

This study investigates the heat transport mechanism in semiconductor elements within a homogeneous thermoelectric cooling system using the dual-phase-lag (DPL) model. The thermal lagging behavior is analyzed and explored during the energy transport process. The coupled energy and constitutive partial differential equations are solved simultaneously to reduce the complexity of the high-order spatial and time derivatives. This approach simplifies the mathematical solution process and reduces numerical instabilities when compared to the conventional methodology in which either the temperature or heat flux is solved individually with a single equation. The effect of the thermal lagging behavior on energy transport is examined and compared to results by using the Cattaneo–Vernotte model. Furthermore, the phase-lag behavior on the temperature and heat flux profiles is investigated in detail. This study provides perceptive information for engineering applications in which the microscale heat transport phenomenon plays a significant role during the design process. Adding the dual-phase-lag model to the traditional heat diffusion model is a complementary option for engineers in the thermoelectric industry.

References

1.
Lam
,
T. T.
,
Yuan
,
S. W. K.
,
Fong
,
E.
, and
Fischer
,
W. D.
,
2018
, “
Analytical Study of Transient Performance of Thermoelectric Coolers Considering the Thomson Effect
,”
Int. J. Therm. Sci.
,
130
, pp.
435
448
.10.1016/j.ijthermalsci.2018.03.010
2.
Rowe
,
D. M.
,
2006
,
Thermoelectrics Handbook - Macro to Nano
,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
.
3.
Phelan
,
P. E.
,
Chiriac
,
V. A.
, and
Lee
,
T.-Y. T.
,
2002
, “
Current and Future Miniature Refrigeration Cooling Technologies for High-Power Microelectronics
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
3
), pp.
356
365
.10.1109/TCAPT.2002.800600
4.
Fleurial
,
J.-P.
,
Borshchevsky
,
A.
,
Ryan
,
M. A.
,
Phillips
,
W.
,
Kolawa
,
E.
,
Kacisch
,
T.
, and
Ewell
,
R.
,
1997
, “
Thermoelectric Microcoolers for Thermal Management Applications
,”
Proceedings of 16th International Conference on Thermoelectrics
, Dresden, Germany, Aug. 26–29, pp.
641
645
.10.1109/ICT.1997.667611
5.
Cai
,
Y.
,
Liu
,
D.
,
Zhao
,
F.-Y.
, and
Tang
,
J.-F.
,
2016
, “
Performance Analysis and Assessment of Thermoelectric Micro Cooler for Electronic Devices
,”
Energy Convers. Manag.
,
124
), pp.
203
211
.10.1016/j.enconman.2016.07.011
6.
Hendricks
,
T. J.
, and
Karri
,
N. K.
,
2009
, “
Micro- and Nano-Technology: A Critical Design Key in Advanced Thermoelectric Cooling Systems
,”
J. Electron. Mater.
,
38
(
7
), pp.
1257
1267
.10.1007/s11664-009-0709-3
7.
Hilbert
,
C.
,
Nelson
,
R.
,
Reed
,
J.
,
Lunceford
,
B.
,
Somadder
,
A.
,
Hu
,
K.
, and
Ghoshal
,
U.
,
1999
, “
Thermoelectric MEMS Coolers
,”
Proceeding of the 18th International Conference on Thermoelectrics Conference
, Baltimore, MD, Aug. 29–Sept. 2, pp.
117
122
.10.1109/ICT.1999.843347
8.
Lara
,
A. F.
,
Islas
,
I. R.
,
García
,
V. H.
,
Guadarrama
,
J. R.
, and
Hurtado
,
F. V.
,
2018
, “
Thermoelectricity From Macro to Nanoscale: Wave Behaviour and Non-Local Effects
,” P. Aranguren, ed.,
Bringing Thermoelectricity into Reality
, Ch. 3,
IntechOpen
, London, UK, pp.
39
60
.
9.
Volklein
,
F.
,
Min
,
G.
, and
Rowe
,
D. M.
,
1999
, “
Modelling of a Microelectromechanical Thermoelectric Cooler
,”
Sens. Actuators A
,
75
(
2
), pp.
95
101
.10.1016/S0924-4247(99)00002-3
10.
Lam
,
T. T.
,
2013
, “
A Unified Solution of Several Heat Conduction Models
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
653
666
.10.1016/j.ijheatmasstransfer.2012.08.055
11.
Fourier
,
J. B.
,
1822
,
Théorie Analytique de la Chaleur
,
Dover Publications
,
New York and Paris
(English translation by
A.
Freeman
, The Analytical Theory of Heat
1955
).
12.
Fong
,
E.
,
Lam
,
T. T.
,
Fischer
,
W. D.
, and
Yuan
,
S. W. K.
,
2019
, “
Analytical Approach for Study of Transient Performance of Thermoelectric Coolers
,”
J. Thermophys. Heat Transfer
,
33
(
1
), pp.
96
105
.10.2514/1.T5452
13.
Chen
,
J.-C.
,
Yan
,
Z.-J.
, and
Wu
,
L.-Q.
,
1996
, “
The Influence of Thomson Effect on the Maximum Power Output and Maximum Efficiency of a Thermoelectric Generator
,”
J. Appl. Phys.
,
79
(
11
), pp.
8823
8828
.10.1063/1.362507
14.
Huang
,
M.-J.
,
Yen
,
R.-H.
, and
Wang
,
A.-B.
,
2005
, “
The Influence of the Thomson Effect on the Performance of a Thermoelectric Cooler
,”
Int. J. Heat Mass Transfer
,
48
(
2
), pp.
413
418
.10.1016/j.ijheatmasstransfer.2004.05.040
15.
Lam
,
T. T.
, and
Yeung
,
W. K.
,
2020
, “
Material Property Effect on Conical Semiconductor Element Temperatures in Inhomogeneous Thermoelectric Coolers
,”
Int. Commun. Heat Mass Transfer
,
117
, p.
104743
.10.1016/j.icheatmasstransfer.2020.104743
16.
Figueroa
,
A.
, and
Vazquez
,
F.
,
2014
, “
Optimal Performance and Entropy Generation Transition From Micro to Nanoscaled Thermoelectric Layers
,”
Int. J. Heat Mass Transfer
,
71
, pp.
724
731
.10.1016/j.ijheatmasstransfer.2013.12.080
17.
Rivera
,
I.
,
Figueroa
,
A.
, and
Vazquez
,
F.
,
2016
, “
Optimization of Supercooling Effect in Nanoscaled Thermoelectric Layers
,”
Commun. Appl. Ind. Math.
,
7
(
2
), pp.
98
110
.10.1515/caim-2016-0008
18.
Vázquez
,
F.
,
Figueroa
,
A.
, and
Rodríguez-Vargas
,
I.
,
2017
, “
Nonlocal and Memory Effects in Nanoscaled Thermoelectric Layers
,”
J. Appl. Phys.
,
121
(
1
), p.
014311
.10.1063/1.4973588
19.
Claro
,
F.
, and
Mahan
,
G. D.
,
1989
, “
Transient Heat Transport in Solids
,”
J. Appl. Phys.
,
66
(
9
), pp.
4213
4217
.10.1063/1.343960
20.
Alvarez
,
F. X.
, and
Jou
,
D.
,
2007
, “
Memory and Nonlocal Effects in Heat Transfer: From Diffusive to Ballistic Regimes
,”
Appl. Phys. Lett.
,
90
(
8
), p.
083109
.10.1063/1.2645110
21.
Joshi
,
A. A.
, and
Majumdar
,
A.
,
1993
, “
Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films
,”
J. Appl. Phys.
,
74
(
1
), pp.
31
39
.10.1063/1.354111
22.
Chen
,
G.
, March
2001
, “
Ballistic-Diffusive Heat-Conduction Equations
,”
Phys. Rev. Lett.
,
86
(
11
), pp.
2297
2300
.10.1103/PhysRevLett.86.2297
23.
Ezzahri
,
Y.
, and
Shakouri
,
A.
,
2009
, “
Ballistic and Diffusive Transport of Energy and Heat in Metals
,”
Phys. Rev. B
,
79
(
18
), p.
184303
(
Erratum Phys. Rev. B
,
81
,
2010
,
179901
).10.1103/PhysRevB.79.184303
24.
Thonhauser
,
T.
,
Mahan
,
G. D.
,
Zikatanov
,
L.
, and
Roe
,
J.
,
2004
, “
Improved Supercooling in Transient Thermoelectrics
,”
Appl. Phys. Lett.
,
85
(
15
), pp.
3247
3249
.10.1063/1.1806276
25.
Mao
,
J. N.
,
Chen
,
H. X.
,
Jia
,
H.
, and
Qian
,
X. L.
,
2012
, “
The Transient Behavior of Peltier Junctions Pulsed With Supercooling
,”
J. Appl. Phys.
,
112
(
1
), p.
014514
.10.1063/1.4735469
26.
Snyder
,
G. J.
,
Fleurial
,
J.-P.
,
Caillat
,
T.
,
Yang
,
R. G.
, and
Chen
,
G.
,
2002
, “
Supercooling of Peltier Cooler Using a Current Pulse
,”
J. Appl. Phys.
,
92
(
3
), pp.
1564
1569
.10.1063/1.1489713
27.
Lam
,
T. T.
, and
Yeung
,
W. K.
, May
2021
, “
Pulsed Current Effect on the Performance of Conical Inhomogeneous Thermoelectrics
,”
Therm. Sci. Engr. Prog.
,
22
, p.
100747
.10.1016/j.tsep.2020.100747
28.
Alata
,
M.
,
Al-Nimr
,
M. A.
, and
Naji
,
M.
,
2003
, “
Transient Behavior of a Thermoelectric Device Under the Hyperbolic Heat Conduction Model
,”
Int. J. Thermophys.
,
24
(
6
), pp.
1753
1768
.10.1023/B:IJOT.0000004103.26293.0c
29.
Cattaneo
,
C.
,
1958
, “
A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation
,”
Comput. R. Acad. Sci. Paris
,
247
, pp.
431
433
.
30.
Vernotte
,
M. P.
,
1958
, “
Paradoxes of the Continuous Theory of the Heat Equation
,”
Comput R. Acad. Sci. Paris
,
246
, pp.
3154
3155
.
31.
Tzou
,
D. Y.
, and
Li
,
J.
,
1993
, “
Thermal Waves Emanating From a Fast-Moving Heat Source With a Finite Dimension
,”
ASME J. Heat Transfer
,
115
(
3
), pp.
526
532
.10.1115/1.2910718
32.
Tzou
,
D. Y.
, and
Li
,
J.
,
1993
, “
Local Heating Induced by a Nonhomogeneously Distributed Heat Source
,”
Int. J. Heat Mass Transfer
,
36
(
14
), pp.
3487
3496
.10.1016/0017-9310(93)90166-4
33.
Tzou
,
D. Y.
,
1993
, “
An Engineering Assessment to the Relaxation Time in Thermal Waves Propagation
,”
Int. J. Heat Mass Transfer
,
36
(
7
), pp.
1845
1851
.10.1016/S0017-9310(05)80171-1
34.
Tzou
,
D. Y.
,
1995
, “
The Generalized Lagging Response in Small-Scales and High-Rate Heating
,”
Int. J. Heat Mass Transfer
,
38
(
17
), pp.
3231
3240
.10.1016/0017-9310(95)00052-B
35.
Tzou
,
D. Y.
,
1995
, “
A Unified Field Approach for Heat Conduction From Micro- to Macro-Scales
,”
ASME J. Heat Transfer-Trans. ASME
,
117
(
1
), pp.
8
16
.10.1115/1.2822329
36.
Tzou
,
D. Y.
,
2015
,
Macro- to Microscale Heat Transfer - the Lagging Behavior
,
Wiley
, West Sussex,
UK
.
37.
Tzou
,
D. Y.
,
1995
, “
Experimental Support for the Lagging Behavior in Heat Propagation
,”
J. Heat Thermophys. Heat Transfer
,
9
(
4
), pp.
686
693
.10.2514/3.725
38.
Qiu
,
T. Q.
,
Juhasz
,
T.
,
Suarez
,
C.
,
Bron
,
W. E.
, and
Tien
,
C. L.
,
1994
, “
Femtosecond Laser Heating of Multi-Layered Metals–II Experiments
,”
Int. J. Heat Mass Transfer
,
37
(
17
), pp.
2799
2808
.10.1016/0017-9310(94)90397-2
39.
Bertman
,
B.
, and
Sandiford
,
D. J.
,
1970
, “
Second Sound in Solid Helium
,”
Sci. Am.
,
222
(
5
), pp.
92
101
.10.1038/scientificamerican0570-92
40.
Kaminski
,
W.
,
1990
, “
Hyperbolic Heat Conduction for Materials With a Non-Homogeneous Inner Structure
,”
ASME J. Heat Transfer-Trans. ASME
,
112
(
3
), pp.
555
560
.10.1115/1.2910422
41.
Mitra
,
K.
,
Kumar
,
S.
,
Vedevarz
,
A.
, and
Moallemi
,
M. K.
,
1995
, “
Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat
,”
ASME J. Heat Transfer-Trans. ASME
,
117
(
3
), pp.
568
573
.10.1115/1.2822615
42.
Peltier
,
J. C. A.
,
1834
, “
New Experiments on the Caloricity of Electric Currents
,”
Ann. Chem. Phys.
,
56
, pp.
371
386
.
43.
Kaviany
,
M.
,
2011
,
Essentials of Heat Transfer: Principles, Materials, and Applications
,
Cambridge University Press
,
New York
.
44.
Antaki
,
P. J.
,
1997
, “
Analysis of Hyperbolic Heat Conduction in a Semi-Infinite Slab With Surface Convection
,”
Int. J. Heat Mass Transfer
,
40
(
13
), pp.
3247
3250
.10.1016/S0017-9310(96)00351-1
45.
Antaki
,
P. J.
,
1995
, “
Key Features of Analytical Solutions for Hyperbolic Heat Conduction
,”
AIAA
Paper No. 95-2044.10.2514/6.1995-2044
You do not currently have access to this content.