Abstract

In a conventional liquid cooling garment (LCG), overcooling of the water inlet temperature shortens the working time and worsens thermal comfort. Such problems have not been well solved so far. In this study, we propose a smart cooling garment with a developed temperature regulation system, effectively reducing un-necessary loss of power consumption and hence extending the work duration. Testing on a thermal manikin was conducted to evaluate the performance of temperature-regulating LCG. The results showed that, compared to the conventional LCG, the proposed system achieved the rapid and accurate adjustment of water temperature, improved the working time by more than 37% with the total weight barely increased, and ensured the thermal comfort of the wearers. The developed LCG opens the possibility for the smart control of the temperature, fitting for the user's preferences regarding the working time and thermal comfort sensations.

References

1.
Yazdi
,
M. M.
, and
Sheikhzadeh
,
M.
,
2014
, “
Personal Cooling Garments: A Review
,”
J. Text. Inst.
,
105
(
12
), pp.
1231
1250
.10.1080/00405000.2014.895088
2.
McLellan
,
T. M.
, and
Selkirk
,
G. A.
,
2006
, “
The Management of Heat Stress for the Firefighter: A Review of Work Conducted on Behalf of the Toronto Fire Service
,”
Ind. Health
,
44
(
3
), pp.
414
426
.10.2486/indhealth.44.414
3.
Delkumburewatte
,
G. B.
, and
Dias
,
T.
,
2012
, “
Wearable Cooling System to Manage Heat in Protective Clothing
,”
J. Text. Inst.
,
103
(
5
), pp.
483
489
.10.1080/00405000.2011.587647
4.
Hou
,
J.
,
Yang
,
Z. W.
,
Xu
,
P.
, and
Huang
,
G. S.
,
2019
, “
Design and Performance Evaluation of Novel Personal Cooling Garment
,”
Appl. Therm. Eng.
,
154
, pp.
131
139
.10.1016/j.applthermaleng.2019.02.013
5.
Epstein
,
Y.
,
Shapiro
,
Y.
, and
Brill
,
S.
,
1986
, “
Comparison Between Different Auxiliary Cooling Devices in a Severe Hot/Dry Climate
,”
Ergonomics
,
29
(
1
), pp.
41
48
.10.1080/00140138608968239
6.
Nunneley
,
S. A.
,
1970
, “
Water Cooled Garments: A Review
,”
Space Life Sci.
,
2
(
3
), pp.
335
360
.10.1007/BF00929293
7.
Ernst
,
T. C.
, and
Garimella
,
S.
,
2013
, “
Demonstration of a Wearable Cooling System for Elevated Ambient Temperature Duty Personnel
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
316
324
.10.1016/j.applthermaleng.2013.06.019
8.
Yang
,
Y. F.
,
Stapleton
,
J.
,
Diagne
,
B. T.
,
Kenny
,
G. P.
, and
Lan
,
C. Q.
,
2012
, “
Man-Portable Personal Cooling Garment Based on Vacuum Desiccant Cooling
,”
Appl. Therm. Eng.
,
47
, pp.
18
24
.10.1016/j.applthermaleng.2012.04.012
9.
Zhao
,
D. L.
,
Lu
,
X.
,
Fan
,
T. Z.
,
Wu
,
Y. S.
,
Lou
,
L.
,
Wang
,
Q. W.
,
Fan
,
J. T.
, and
Yang
,
R. G.
,
2018
, “
Personal Thermal Management Using Portable Thermoelectrics for Potential Building Energy Saving
,”
Appl. Therm. Eng.
,
218
, pp.
282
291
.10.1016/j.apenergy.2018.02.158
10.
Kong
,
M.
,
Dang
,
T. Q.
,
Zhang
,
J. S.
, and
Khalifa
,
H. E.
,
2017
, “
Micro-Environmental Control for Efficient Local Cooling
,”
Build. Environ.
,
118
, pp.
300
312
.10.1016/j.buildenv.2017.03.040
11.
Guo
,
T. H.
,
Shang
,
B. F.
,
Duan
,
B.
, and
Luo
,
X. B.
,
2015
, “
Design and Testing of a Liquid Cooled Garment for Hot Environments
,”
J. Therm. Biol.
,
49–50
, pp.
47
54
.10.1016/j.jtherbio.2015.01.003
12.
Wang
,
T.
,
Wang
,
L.
,
Bai
,
L. Z.
,
Lin
,
G. P.
,
Bu
,
X. Q.
,
Liu
,
X. Y.
, and
Xie
,
G. H.
,
2015
, “
Experimental Study on the Performance of a Liquid Cooling Garment With the Application of MEPCMS
,”
Energy Convers. Manage.
,
103
, pp.
943
957
.10.1016/j.enconman.2015.07.043
13.
Nag
,
P. K.
,
Pradhan
,
C. K.
,
Nag
,
A.
,
Ashtekar
,
S. P.
, and
Desai
,
H.
,
1998
, “
Efficacy of a Water-Cooled Garment for Auxiliary Body Cooling in Heat
,”
Ergonomics
,
41
(
2
), pp.
179
187
.10.1080/001401398187233
14.
Cao
,
H. T.
,
Branson
,
D. H.
,
Peksoz
,
S.
,
Nam
,
J.
, and
Farr
,
C. A.
,
2006
, “
Fabric Selection for a Liquid Cooling Garment
,”
Text. Res. J.
,
76
(
7
), pp.
587
595
.10.1177/0040517506067375
15.
Shirish
,
A.
,
Kapadia
,
V.
,
Kumar
,
S.
,
Kumar
,
S.
,
Mishra
,
S.
, and
Singh
,
G.
,
2016
, “
Effectiveness of a Cooling Jacket With Reference to Physiological Responses in Iron Foundry Workers
,”
Int. J. Occup. Saf. Ergonom.
,
22
(
4
), pp.
487
493
.10.1080/10803548.2016.1181484
16.
Xu
,
X. J.
,
Hexamer
,
M.
, and
Werner
,
J.
,
1999
, “
Multi-Loop Control of Liquid Cooling Garment Systems
,”
Ergonomics
,
42
(
2
), pp.
282
298
.10.1080/001401399185658
17.
Jette
,
F.-X.
,
Dionne
,
J.-P.
,
Rose
,
J.
, and
Makris
,
A.
,
2004
, “
Effect of Thermal Manikin Surface Temperature on the Performance of Personal Cooling Systems
,”
Eur. J. Appl. Physiol.
,
92
(
6
), pp.
669
672
.10.1007/s00421-004-1112-7
18.
Bartkowiak
,
G.
,
Dabrowska
,
A.
, and
Marszalek
,
A.
,
2017
, “
Assessment of an Active Liquid Cooling Garment Intended for Use in a Hot Environment
,”
Appl. Ergonom.
,
58
, pp.
182
189
.10.1016/j.apergo.2016.06.009
19.
Wu
,
R. K.
,
Duan
,
B.
,
Liu
,
F. L.
,
Wu
,
H.
,
Cheng
,
Y. H.
, and
Luo
,
X. B.
,
2017
, “
Design of a Hydro-Dynamically Levitated Centrifugal Micro-Pump for the Active Liquid Cooling System
,”
18th International Conference on Electronic Packaging Technology
(
ICEPT
), IEEE, Harbin, China, Aug. 16–19, pp.
402
406
.https://www.researchgate.net/profile/Ruikang-Wu/publication/320117712_Design_of_a_hydro-dynamically_levitated_centrifugal_micro-pump_for_the_active_liquid_cooling_system/links/5b1e6dc10f7e9b68b42cbba8/Design-of-a-hydro-dynamically-levitated-centrifugal-micro-pump-for-the-active-liquid-cooling-system.pdf
20.
Wu
,
R. K.
,
Hong
,
T.
,
Cheng
,
Q. Y.
,
Zou
,
H.
,
Fan
,
Y. W.
, and
Luo
,
X. B.
,
2019
, “
Thermal Modeling and Comparative Analysis of Jet Impingement Liquid Cooling for High Power Electronics
,”
Int. J. Heat Mass Transfer
,
137
, pp.
42
51
.10.1016/j.ijheatmasstransfer.2019.03.112
21.
Shu
,
W. C.
,
Fan
,
Y. W.
,
Zhang
,
X. F.
,
Wang
,
J. W.
, and
Luo
,
X. B.
,
2020
, “
Thermal Sensation Modeling and Experiments for Liquid-Cooled Garments
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
10
(
3
), pp.
418
423
.10.1109/TCPMT.2019.2930727
You do not currently have access to this content.