Abstract
The effects of cyclic stress on the polarization curve of SAC305 lead-free solder are investigated. It is found that stress increases the corrosion tendency of the material. The cyclic loading affects the corrosion current density response, which is manifested by the instantaneous surge of stress-induced current density. The cyclic stress with peak stress above yield strength significantly increases the stress-induced current density and promotes the occurrence of corrosion events. Furthermore, the effect of strain accumulation on passive film is in situ characterized by real-time observation and digital image correlation (DIC) technique, which provides effective evidence for failure.
Issue Section:
Research Papers
References
1.
Janne
,
J. S.
,
Sami
,
T. N.
,
Toivo
,
K. L.
, and
Eero
,
O. R.
, 2006
, “
Mechanical and Microstructural Properties of SnAgCu Solder Joints
,” Mater. Sci. Eng. A
,
420
, pp. 55
–62
.10.1016/j.msea.2006.01.0652.
Mohanty
,
U. S.
, and
Lin
,
K. L.
, 2008
, “
Electrochemical Corrosion Behaviour of Pb-Free Sn-8.5Zn-0.05Al-XGa and Sn-3Ag-0.5Cu Alloys in Chloride Containing Aqueous Solution
,” Corros. Sci.
,
50
(9
), pp. 2437
–2443
.10.1016/j.corsci.2008.06.0423.
Li
,
D. Z.
,
Conway
,
P. P.
, and
Liu
,
C. Q.
, 2008
, “
Corrosion Characterization of Tin-Lead and Lead Free Solders in 3.5 wt.% NaCl Solution
,” Corros. Sci.
,
50
(4
), pp. 995
–1004
.10.1016/j.corsci.2007.11.0254.
Anderson
,
I. E.
, 2006
, “
Development of Sn-Ag-Cu and Sn-Ag-Cu-X Alloys for Pb-Free Electronic Solder Applications
,” J. Mater. Sci.: Mater. Electron.
,
18
(1–3
), pp. 55
–76
.10.1007/s10854-006-9011-95.
Medgyes
,
B.
,
Horváth
,
B.
,
Illés
,
B.
,
Shinohara
,
T.
,
Tahara
,
A.
,
Harsányi
,
G.
, and
Krammer
,
O.
, 2015
, “
Microstructure and Elemental Composition of Electrochemically Formed Dendrites on Lead-Free Micro-Alloyed Low Ag Solder Alloys Used in Electronics
,” Corros. Sci.
,
92
, pp. 43
–47
.10.1016/j.corsci.2014.11.0046.
Abtew
,
M.
, and
Selvaduray
,
G.
, 2000
, “
Lead-Free Solders in Microelectronics
,” Mater. Sci. Eng. R.
,
27
(5–6
), pp. 95
–141
.10.1016/S0927-796X(00)00010-37.
Gutman
,
E. M.
, 1994
, Mechanochemistry of Solid Surfaces
,
World Scientific
,
Singapore
.8.
Lee
,
S. W. R.
, and
Lau
,
J. H.
, 1998
, “
Solder Joint Reliability of Cavity-Down Plastic Ball Grid Array Assemblies
,” Solder. Surf. Mount Technol.
,
10
(1
), pp. 26
–31
.10.1108/09540919810203829 9.
Pietrzak
,
K.
,
Grobelny
,
M.
,
Makowska
,
K.
,
Sobczak
,
N.
,
Rudnik
,
D.
,
Wojciechowski
,
A.
, and
Sienicki
,
E.
, 2012
, “
Structural Aspects of the Behavior of Lead-Free Solder in the Corrosive Solution
,” J. Mater. Eng. Perfor.
,
21
(5
), pp. 648
–654
.10.1007/s11665-012-0145-z10.
Lehman
,
L. P.
,
Xing
,
Y.
,
Bieler
,
T. R.
, and
Cotts
,
E. J.
, 2010
, “
Cyclic Twin Nucleation in Tin-Based Solder Alloys
,” Acta Mater.
,
58
(10
), pp. 3546
–3556
.10.1016/j.actamat.2010.01.03011.
Kerr
,
M.
, and
Chawla
,
N.
, 2004
, “
Creep Deformation Behavior of Sn-3.5Ag Solder/Cu Couple at Small Length Scales
,” Acta Mater.
,
52
(15
), pp. 4527
–4535
.10.1016/j.actamat.2004.06.01012.
Tian
,
Y.
,
Hang
,
C.
,
Wang
,
C.
,
Yang
,
S.
, and
Lin
,
P.
, 2011
, “
Effects of Bump Size on Deformation and Fracture Behavior of Sn3.0Ag0.5Cu/Cu Solder Joints During Shear Testing
,” Mater. Sci. Eng. A.
,
529
, pp. 468
–478
.10.1016/j.msea.2011.09.06313.
Hu
,
J.
,
Luo
,
T.
,
Hu
,
A.
,
Li
,
M.
, and
Mao
,
D.
, 2011
, “
Electrochemical Corrosion Behaviors of Sn-9Zn-3Bi-xCr Solder in 3.5% NaCl Solution
,” J. Electron. Mater.
,
40
(7
), pp. 1556
–1562
.10.1007/s11664-011-1650-914.
Yokoyama
,
K.
,
Tsuji
,
D.
, and
Sakai
,
J.
, 2011
, “
Fracture of Sustained Tensile-Loaded Sn–3.0Ag–0.5Cu Solder Alloy in NaCl Solution
,” Corros. Sci.
,
53
(10
), pp. 3331
–3336
.10.1016/j.corsci.2011.06.01015.
Park
,
S.
,
Dhakal
,
R.
,
Lehman
,
L.
, and
Cotts
,
E.
, 2007
, “
Measurement of Deformations in SnAgCu Solder Interconnects Under in Situ Thermal Loading
,” Acta Mater.
,
55
(9
), pp. 3253
–3260
.10.1016/j.actamat.2007.01.02816.
Klein
,
M.
,
Frieling
,
G.
, and
Walther
,
F.
, 2017
, “
Corrosion Fatigue Assessment of Creep-Resistant Magnesium Alloys DieMag422 and AE42
,” Eng. Fract. Mech.
,
185
, pp. 33
–45
.10.1016/j.engfracmech.2017.02.02417.
El May
,
M.
,
Saintier
,
N.
,
Palin-Luc
,
T.
,
Devos
,
O.
, and
Brucelle
,
B.
, 2018
, “
Modelling of Corrosion Fatigue Crack Initiation on Martensitic Stainless Steel in High Cycle Fatigue Regime
,” Corros. Sci.
,
133
, pp. 397
–405
.10.1016/j.corsci.2018.01.03418.
Wittke
,
P.
,
Klein
,
M.
,
Dieringa
,
H.
, and
Walther
,
F.
, 2016
, “
Corrosion Fatigue Assessment of Creep-Resistant Magnesium Alloy Mg–4Al–2Ba–2Ca in Aqueous Sodium Chloride Solution
,” Int. J. Fatigue
,
83
, pp. 59
–65
.10.1016/j.ijfatigue.2015.04.00119.
Canut
,
F. A.
,
Alda Simões
,
M. P.
, and
Reis
,
L.
, 2019
, “
Monitoring of Corrosion‐Fatigue Degradation of Grade R4 Steel Using an Electrochemical-Mechanical Combined Approach
,” Fatigue Fract. Eng. Mater. Struct.
,
42
, pp. 1
–11
.10.1111/ffe.1307920.
Ren
,
R. K.
,
Zhang
,
S.
,
Pang
,
X. L.
, and
Gao
,
K. W.
, 2012
, “
A Novel Observation of the Interaction Between the Macroelastic Stress and Electrochemical Corrosion of Low Carbon Steel in 3.5 wt% NaCl Solution
,” Electrochim. Acta
,
85
, pp. 283
–294
.10.1016/j.electacta.2012.08.07921.
Li
,
Y. F.
,
Farrington
,
G. C.
, and
Laird
,
C.
, 1993
, “
Cyclic Response-Electrochemical Interaction in Mono- and Polycrystalline AISI 316 L Stainless Steel in H2SO4 Solution-I. The Influence of Mechanical Strain on the Transient Dissolution Behavior During Corrosion Fatigue
,” Acta Mater.
,
41
, pp. 6993
–6708
.10.1016/0956-7151(93)90003-B22.
Tada
,
E.
, 2007
, “
Detection of Corrosion Fatigue Cracking Through Current Responses Induced by Cyclic Stressing
,” Corros. Sci.
,
49
(1
), pp. 248
–254
.10.1016/j.corsci.2006.05.01023.
Zhao
,
T.
,
Liu
,
Z.
,
Chao
,
L.
,
Dai
,
C.
,
Du
,
C.
, and
Li
,
X.
, 2018
, “
Variation of the Corrosion Behavior Prior to Crack Initiation of E690 Steel Fatigued in Simulated Seawater With Various Cyclic Stress Levels
,” J. Mater. Eng. Perfor.
,
27
(9
), pp. 4921
–4931
.10.1007/s11665-018-3585-224.
Wang
,
B. J.
,
Xu
,
D. K.
,
Wang
,
S. D.
,
Sheng
,
L. Y.
,
Zeng
,
R.-C.
, and
Han
,
E-h.
, 2019
, “
Influence of Solution Treatment on the Corrosion Fatigue Behavior of an as-Forged Mg-Zn-Y-Zr Alloy
,” Inter. J. Fatigue
,
120
, pp. 46
–55
.10.1016/j.ijfatigue.2018.10.01925.
Gutman
,
E. M.
,
Solovioff
,
G.
, and
Eliezer
,
D.
, 1996
, “
The Mechanochemical Behavior of Type 316 L Stainless Steel
,” Corros. Sci.
,
38
(7
), pp. 1141
–1145
.10.1016/0010-938X(96)00008-X26.
Wang
,
J. Q.
,
Li
,
J.
,
Wang
,
Z. F.
,
Zhu
,
Z. Y.
,
Ke
,
W.
,
Wang
,
Z. G.
, and
Zang
,
Q. S.
, 1993
, “
Influence of Loading Frequency on Transient Current Behavior of Fe-26Cr-1Mo During Low Cycle Corrosion Fatigue in 1M H2SO4 and 0.6M NaCl Solutions
,” Scr. Met. Mater.
,
29
(11
), pp. 1415
–1424
.10.1016/0956-716X(93)90329-Q27.
Suter
,
T.
,
Webb
,
E. G.
,
BöHni
,
H.
, and
Alkire
,
R. C.
, 2001
, “
Pit Initiation on Stainless Steels in 1 M NaCl With and Without Mechanical Stress
,” J. Electrochem. Soc.
,
148
(5
), pp. B174
–185
.10.1149/1.136020428.
Lu
,
B. T.
,
Luo
,
J. L.
,
Norton
,
P. R.
, and
Ma
,
H. Y.
, 2009
, “
Effects of Dissolved Hydrogen and Elastic and Plastic Deformation on Active Dissolution of Pipeline Steel in Anaerobic Groundwater of Near-Neutral pH
,” Acta Mater.
,
57
(1
), pp. 41
–49
.10.1016/j.actamat.2008.08.03529.
Rao
,
S. X.
,
Zhang
,
L. B.
,
Wei
,
W.
, and
Pan
,
Z. W.
, 2011
, “
Corrosion-Deformation Interactions (CDI) of AA2024-T3 in Chloride Media
,” Adv. Mate. Res.
,
284–286
, pp. 2094
–2101
.10.4028/www.scientific.net/AMR.284-286.209430.
Yokoyama
,
K.
,
Nogami
,
A.
, and
Sakai
,
J.
, 2014
, “
Creep Corrosion Cracking of Sn–3.0Ag and Sn–0.5Cu Solder Alloys in NaCl Solution
,” Corros. Sci.
,
86
, pp. 142
–148
.10.1016/j.corsci.2014.05.00431.
Huang
,
Y.-H.
,
Tu
,
S.-T.
,
Xuan
,
F.-Z.
, and
Itoh
,
T.
, 2014
, “
Corrosion Fatigue Behaviour of 304 Stainless Steel Under Proportional and Non-Proportional Multiaxial Loading Condition
,” Fatigue Fract. Eng. Mater. Struct.
,
37
(4
), pp. 436
–445
.10.1111/ffe.1212832.
Ma
,
J.
,
Zhang
,
B.
,
Wang
,
J.
,
Wang
,
G.
,
Han
,
E.-H.
, and
Ke
,
W.
, 2010
, “
Anisotropic 3D Growth of Corrosion Pits Initiated at MnS Inclusions for A537 Steel During Corrosion Fatigue
,” Corros. Sci.
,
52
(9
), pp. 2867
–2877
.10.1016/j.corsci.2010.04.03633.
Guan
,
L.
,
Zhang
,
B.
,
Yong
,
X. P.
,
Wang
,
J. Q.
,
Han
,
E.-H.
, and
Ke
,
W.
, 2015
, “
Effects of Cyclic Stress on the Metastable Pitting Characteristic for 304 Stainless Steel Under Potentiostatic Polarization
,” Corros. Sci.
,
93
, pp. 80
–89
.10.1016/j.corsci.2015.01.00934.
Guan
,
L.
,
Zhang
,
B.
,
Yong
,
X. P.
,
Zhou
,
Y.
,
Wang
,
J. Q.
,
Han
,
E.-H.
, and
Ke
,
W.
, 2016
, “
Quantitative Understanding of the Current Responses Under Elastic Cyclic Loading for 304 Stainless Steel
,” J. Electrochem. Soc.
,
163
(10
), pp. C627
–632
.10.1149/2.0341610jes35.
Mohanty
,
U. S.
, and
Lin
,
K. L.
, 2007
, “
Electrochemical Corrosion Study of Sn–XAg–0.5Cu Alloys in 3.5% NaCl Solution
,” J. Mater. Res.
,
22
(9
), pp. 2573
–2581
.10.1557/jmr.2007.032836.
Kamarul
,
A. A.
, and
Hamzah
,
E.
, 2013
, “
Corrosion Behaviour of Lead-Free and Sn-Pb Solders in 3.5 wt% NaCl
,” Adv. Mater. Res.
,
686
, pp. 250
–260
.10.4028/www.scientific.net/AMR.686.25037.
Liu
,
P. L.
, and
Shang
,
J. K.
, 2000
, “
Thermal Stability of Electroless-Nickel/Solder Interface: Part B. Interfacial Fatigue Resistance
,” Metall. Mater. Trans. A
,
31
(11
), pp. 2867
–2875
.10.1007/BF0283035238.
Wang
,
M. N.
,
Wang
,
J. Q.
,
Feng
,
H.
, and
Ke
,
W.
, 2012
, “
Effects of Micro-Structure and Temperature on Corrosion Behavior of Sn–3.0Ag–0.5Cu Lead-Free Solder
,” J. Mater. Sci.: Mater. Electron.
,
23
(1
), pp. 148
–155
.10.1007/s10854-011-0552-139.
Eliezer
,
A.
,
Gutman
,
E. M.
,
Haga
,
H.
, and
Aghion
,
E.
, 1998
, “
Mechanoelectrochemical Behavior and Plasticity of Magnesium Alloys
,” Mater. Sci. Forum.
,
289–292
, pp. 517
–528
.10.4028/www.scientific.net/MSF.289-292.51740.
Wang
,
H.
,
Gao
,
Z.
,
Liu
,
Y.
,
Li
,
C.
,
Ma
,
Z.
, and
Yu
,
L.
, 2015
, “
Evaluation of Cooling Rate on Electrochemical Behavior of Sn-0.3Ag-0.9Zn Solder Alloy in 3.5 wt% NaCl Solution
,” J. Mater. Sci-Mater. El.
,
26
(1
), pp. 11
–22
.10.1007/s10854-014-2356-641.
Macdonald
,
D. D.
, 2012
, “
The Passive State in Our Reactive Metals-Based Civilization
,” Arab. J. Sci. Eng.
,
37
(5
), pp. 1143
–1185
.10.1007/s13369-012-0281-7Copyright © 2022 by ASME
You do not currently have access to this content.