Abstract

The effects of cyclic stress on the polarization curve of SAC305 lead-free solder are investigated. It is found that stress increases the corrosion tendency of the material. The cyclic loading affects the corrosion current density response, which is manifested by the instantaneous surge of stress-induced current density. The cyclic stress with peak stress above yield strength significantly increases the stress-induced current density and promotes the occurrence of corrosion events. Furthermore, the effect of strain accumulation on passive film is in situ characterized by real-time observation and digital image correlation (DIC) technique, which provides effective evidence for failure.

References

1.
Janne
,
J. S.
,
Sami
,
T. N.
,
Toivo
,
K. L.
, and
Eero
,
O. R.
,
2006
, “
Mechanical and Microstructural Properties of SnAgCu Solder Joints
,”
Mater. Sci. Eng. A
,
420
, pp.
55
62
.10.1016/j.msea.2006.01.065
2.
Mohanty
,
U. S.
, and
Lin
,
K. L.
,
2008
, “
Electrochemical Corrosion Behaviour of Pb-Free Sn-8.5Zn-0.05Al-XGa and Sn-3Ag-0.5Cu Alloys in Chloride Containing Aqueous Solution
,”
Corros. Sci.
,
50
(
9
), pp.
2437
2443
.10.1016/j.corsci.2008.06.042
3.
Li
,
D. Z.
,
Conway
,
P. P.
, and
Liu
,
C. Q.
,
2008
, “
Corrosion Characterization of Tin-Lead and Lead Free Solders in 3.5 wt.% NaCl Solution
,”
Corros. Sci.
,
50
(
4
), pp.
995
1004
.10.1016/j.corsci.2007.11.025
4.
Anderson
,
I. E.
,
2006
, “
Development of Sn-Ag-Cu and Sn-Ag-Cu-X Alloys for Pb-Free Electronic Solder Applications
,”
J. Mater. Sci.: Mater. Electron.
,
18
(
1–3
), pp.
55
76
.10.1007/s10854-006-9011-9
5.
Medgyes
,
B.
,
Horváth
,
B.
,
Illés
,
B.
,
Shinohara
,
T.
,
Tahara
,
A.
,
Harsányi
,
G.
, and
Krammer
,
O.
,
2015
, “
Microstructure and Elemental Composition of Electrochemically Formed Dendrites on Lead-Free Micro-Alloyed Low Ag Solder Alloys Used in Electronics
,”
Corros. Sci.
,
92
, pp.
43
47
.10.1016/j.corsci.2014.11.004
6.
Abtew
,
M.
, and
Selvaduray
,
G.
,
2000
, “
Lead-Free Solders in Microelectronics
,”
Mater. Sci. Eng. R.
,
27
(
5–6
), pp.
95
141
.10.1016/S0927-796X(00)00010-3
7.
Gutman
,
E. M.
,
1994
,
Mechanochemistry of Solid Surfaces
,
World Scientific
,
Singapore
.
8.
Lee
,
S. W. R.
, and
Lau
,
J. H.
,
1998
, “
Solder Joint Reliability of Cavity-Down Plastic Ball Grid Array Assemblies
,”
Solder. Surf. Mount Technol.
,
10
(
1
), pp.
26
31
.10.1108/09540919810203829
9.
Pietrzak
,
K.
,
Grobelny
,
M.
,
Makowska
,
K.
,
Sobczak
,
N.
,
Rudnik
,
D.
,
Wojciechowski
,
A.
, and
Sienicki
,
E.
,
2012
, “
Structural Aspects of the Behavior of Lead-Free Solder in the Corrosive Solution
,”
J. Mater. Eng. Perfor.
,
21
(
5
), pp.
648
654
.10.1007/s11665-012-0145-z
10.
Lehman
,
L. P.
,
Xing
,
Y.
,
Bieler
,
T. R.
, and
Cotts
,
E. J.
,
2010
, “
Cyclic Twin Nucleation in Tin-Based Solder Alloys
,”
Acta Mater.
,
58
(
10
), pp.
3546
3556
.10.1016/j.actamat.2010.01.030
11.
Kerr
,
M.
, and
Chawla
,
N.
,
2004
, “
Creep Deformation Behavior of Sn-3.5Ag Solder/Cu Couple at Small Length Scales
,”
Acta Mater.
,
52
(
15
), pp.
4527
4535
.10.1016/j.actamat.2004.06.010
12.
Tian
,
Y.
,
Hang
,
C.
,
Wang
,
C.
,
Yang
,
S.
, and
Lin
,
P.
,
2011
, “
Effects of Bump Size on Deformation and Fracture Behavior of Sn3.0Ag0.5Cu/Cu Solder Joints During Shear Testing
,”
Mater. Sci. Eng. A.
,
529
, pp.
468
478
.10.1016/j.msea.2011.09.063
13.
Hu
,
J.
,
Luo
,
T.
,
Hu
,
A.
,
Li
,
M.
, and
Mao
,
D.
,
2011
, “
Electrochemical Corrosion Behaviors of Sn-9Zn-3Bi-xCr Solder in 3.5% NaCl Solution
,”
J. Electron. Mater.
,
40
(
7
), pp.
1556
1562
.10.1007/s11664-011-1650-9
14.
Yokoyama
,
K.
,
Tsuji
,
D.
, and
Sakai
,
J.
,
2011
, “
Fracture of Sustained Tensile-Loaded Sn–3.0Ag–0.5Cu Solder Alloy in NaCl Solution
,”
Corros. Sci.
,
53
(
10
), pp.
3331
3336
.10.1016/j.corsci.2011.06.010
15.
Park
,
S.
,
Dhakal
,
R.
,
Lehman
,
L.
, and
Cotts
,
E.
,
2007
, “
Measurement of Deformations in SnAgCu Solder Interconnects Under in Situ Thermal Loading
,”
Acta Mater.
,
55
(
9
), pp.
3253
3260
.10.1016/j.actamat.2007.01.028
16.
Klein
,
M.
,
Frieling
,
G.
, and
Walther
,
F.
,
2017
, “
Corrosion Fatigue Assessment of Creep-Resistant Magnesium Alloys DieMag422 and AE42
,”
Eng. Fract. Mech.
,
185
, pp.
33
45
.10.1016/j.engfracmech.2017.02.024
17.
El May
,
M.
,
Saintier
,
N.
,
Palin-Luc
,
T.
,
Devos
,
O.
, and
Brucelle
,
B.
,
2018
, “
Modelling of Corrosion Fatigue Crack Initiation on Martensitic Stainless Steel in High Cycle Fatigue Regime
,”
Corros. Sci.
,
133
, pp.
397
405
.10.1016/j.corsci.2018.01.034
18.
Wittke
,
P.
,
Klein
,
M.
,
Dieringa
,
H.
, and
Walther
,
F.
,
2016
, “
Corrosion Fatigue Assessment of Creep-Resistant Magnesium Alloy Mg–4Al–2Ba–2Ca in Aqueous Sodium Chloride Solution
,”
Int. J. Fatigue
,
83
, pp.
59
65
.10.1016/j.ijfatigue.2015.04.001
19.
Canut
,
F. A.
,
Alda Simões
,
M. P.
, and
Reis
,
L.
,
2019
, “
Monitoring of Corrosion‐Fatigue Degradation of Grade R4 Steel Using an Electrochemical-Mechanical Combined Approach
,”
Fatigue Fract. Eng. Mater. Struct.
,
42
, pp.
1
11
.10.1111/ffe.13079
20.
Ren
,
R. K.
,
Zhang
,
S.
,
Pang
,
X. L.
, and
Gao
,
K. W.
,
2012
, “
A Novel Observation of the Interaction Between the Macroelastic Stress and Electrochemical Corrosion of Low Carbon Steel in 3.5 wt% NaCl Solution
,”
Electrochim. Acta
,
85
, pp.
283
294
.10.1016/j.electacta.2012.08.079
21.
Li
,
Y. F.
,
Farrington
,
G. C.
, and
Laird
,
C.
,
1993
, “
Cyclic Response-Electrochemical Interaction in Mono- and Polycrystalline AISI 316 L Stainless Steel in H2SO4 Solution-I. The Influence of Mechanical Strain on the Transient Dissolution Behavior During Corrosion Fatigue
,”
Acta Mater.
,
41
, pp.
6993
6708
.10.1016/0956-7151(93)90003-B
22.
Tada
,
E.
,
2007
, “
Detection of Corrosion Fatigue Cracking Through Current Responses Induced by Cyclic Stressing
,”
Corros. Sci.
,
49
(
1
), pp.
248
254
.10.1016/j.corsci.2006.05.010
23.
Zhao
,
T.
,
Liu
,
Z.
,
Chao
,
L.
,
Dai
,
C.
,
Du
,
C.
, and
Li
,
X.
,
2018
, “
Variation of the Corrosion Behavior Prior to Crack Initiation of E690 Steel Fatigued in Simulated Seawater With Various Cyclic Stress Levels
,”
J. Mater. Eng. Perfor.
,
27
(
9
), pp.
4921
4931
.10.1007/s11665-018-3585-2
24.
Wang
,
B. J.
,
Xu
,
D. K.
,
Wang
,
S. D.
,
Sheng
,
L. Y.
,
Zeng
,
R.-C.
, and
Han
,
E-h.
,
2019
, “
Influence of Solution Treatment on the Corrosion Fatigue Behavior of an as-Forged Mg-Zn-Y-Zr Alloy
,”
Inter. J. Fatigue
,
120
, pp.
46
55
.10.1016/j.ijfatigue.2018.10.019
25.
Gutman
,
E. M.
,
Solovioff
,
G.
, and
Eliezer
,
D.
,
1996
, “
The Mechanochemical Behavior of Type 316 L Stainless Steel
,”
Corros. Sci.
,
38
(
7
), pp.
1141
1145
.10.1016/0010-938X(96)00008-X
26.
Wang
,
J. Q.
,
Li
,
J.
,
Wang
,
Z. F.
,
Zhu
,
Z. Y.
,
Ke
,
W.
,
Wang
,
Z. G.
, and
Zang
,
Q. S.
,
1993
, “
Influence of Loading Frequency on Transient Current Behavior of Fe-26Cr-1Mo During Low Cycle Corrosion Fatigue in 1M H2SO4 and 0.6M NaCl Solutions
,”
Scr. Met. Mater.
,
29
(
11
), pp.
1415
1424
.10.1016/0956-716X(93)90329-Q
27.
Suter
,
T.
,
Webb
,
E. G.
,
BöHni
,
H.
, and
Alkire
,
R. C.
,
2001
, “
Pit Initiation on Stainless Steels in 1 M NaCl With and Without Mechanical Stress
,”
J. Electrochem. Soc.
,
148
(
5
), pp.
B174
185
.10.1149/1.1360204
28.
Lu
,
B. T.
,
Luo
,
J. L.
,
Norton
,
P. R.
, and
Ma
,
H. Y.
,
2009
, “
Effects of Dissolved Hydrogen and Elastic and Plastic Deformation on Active Dissolution of Pipeline Steel in Anaerobic Groundwater of Near-Neutral pH
,”
Acta Mater.
,
57
(
1
), pp.
41
49
.10.1016/j.actamat.2008.08.035
29.
Rao
,
S. X.
,
Zhang
,
L. B.
,
Wei
,
W.
, and
Pan
,
Z. W.
,
2011
, “
Corrosion-Deformation Interactions (CDI) of AA2024-T3 in Chloride Media
,”
Adv. Mate. Res.
,
284–286
, pp.
2094
2101
.10.4028/www.scientific.net/AMR.284-286.2094
30.
Yokoyama
,
K.
,
Nogami
,
A.
, and
Sakai
,
J.
,
2014
, “
Creep Corrosion Cracking of Sn–3.0Ag and Sn–0.5Cu Solder Alloys in NaCl Solution
,”
Corros. Sci.
,
86
, pp.
142
148
.10.1016/j.corsci.2014.05.004
31.
Huang
,
Y.-H.
,
Tu
,
S.-T.
,
Xuan
,
F.-Z.
, and
Itoh
,
T.
,
2014
, “
Corrosion Fatigue Behaviour of 304 Stainless Steel Under Proportional and Non-Proportional Multiaxial Loading Condition
,”
Fatigue Fract. Eng. Mater. Struct.
,
37
(
4
), pp.
436
445
.10.1111/ffe.12128
32.
Ma
,
J.
,
Zhang
,
B.
,
Wang
,
J.
,
Wang
,
G.
,
Han
,
E.-H.
, and
Ke
,
W.
,
2010
, “
Anisotropic 3D Growth of Corrosion Pits Initiated at MnS Inclusions for A537 Steel During Corrosion Fatigue
,”
Corros. Sci.
,
52
(
9
), pp.
2867
2877
.10.1016/j.corsci.2010.04.036
33.
Guan
,
L.
,
Zhang
,
B.
,
Yong
,
X. P.
,
Wang
,
J. Q.
,
Han
,
E.-H.
, and
Ke
,
W.
,
2015
, “
Effects of Cyclic Stress on the Metastable Pitting Characteristic for 304 Stainless Steel Under Potentiostatic Polarization
,”
Corros. Sci.
,
93
, pp.
80
89
.10.1016/j.corsci.2015.01.009
34.
Guan
,
L.
,
Zhang
,
B.
,
Yong
,
X. P.
,
Zhou
,
Y.
,
Wang
,
J. Q.
,
Han
,
E.-H.
, and
Ke
,
W.
,
2016
, “
Quantitative Understanding of the Current Responses Under Elastic Cyclic Loading for 304 Stainless Steel
,”
J. Electrochem. Soc.
,
163
(
10
), pp.
C627
632
.10.1149/2.0341610jes
35.
Mohanty
,
U. S.
, and
Lin
,
K. L.
,
2007
, “
Electrochemical Corrosion Study of Sn–XAg–0.5Cu Alloys in 3.5% NaCl Solution
,”
J. Mater. Res.
,
22
(
9
), pp.
2573
2581
.10.1557/jmr.2007.0328
36.
Kamarul
,
A. A.
, and
Hamzah
,
E.
,
2013
, “
Corrosion Behaviour of Lead-Free and Sn-Pb Solders in 3.5 wt% NaCl
,”
Adv. Mater. Res.
,
686
, pp.
250
260
.10.4028/www.scientific.net/AMR.686.250
37.
Liu
,
P. L.
, and
Shang
,
J. K.
,
2000
, “
Thermal Stability of Electroless-Nickel/Solder Interface: Part B. Interfacial Fatigue Resistance
,”
Metall. Mater. Trans. A
,
31
(
11
), pp.
2867
2875
.10.1007/BF02830352
38.
Wang
,
M. N.
,
Wang
,
J. Q.
,
Feng
,
H.
, and
Ke
,
W.
,
2012
, “
Effects of Micro-Structure and Temperature on Corrosion Behavior of Sn–3.0Ag–0.5Cu Lead-Free Solder
,”
J. Mater. Sci.: Mater. Electron.
,
23
(
1
), pp.
148
155
.10.1007/s10854-011-0552-1
39.
Eliezer
,
A.
,
Gutman
,
E. M.
,
Haga
,
H.
, and
Aghion
,
E.
,
1998
, “
Mechanoelectrochemical Behavior and Plasticity of Magnesium Alloys
,”
Mater. Sci. Forum.
,
289–292
, pp.
517
528
.10.4028/www.scientific.net/MSF.289-292.517
40.
Wang
,
H.
,
Gao
,
Z.
,
Liu
,
Y.
,
Li
,
C.
,
Ma
,
Z.
, and
Yu
,
L.
,
2015
, “
Evaluation of Cooling Rate on Electrochemical Behavior of Sn-0.3Ag-0.9Zn Solder Alloy in 3.5 wt% NaCl Solution
,”
J. Mater. Sci-Mater. El.
,
26
(
1
), pp.
11
22
.10.1007/s10854-014-2356-6
41.
Macdonald
,
D. D.
,
2012
, “
The Passive State in Our Reactive Metals-Based Civilization
,”
Arab. J. Sci. Eng.
,
37
(
5
), pp.
1143
1185
.10.1007/s13369-012-0281-7
You do not currently have access to this content.