Abstract

As power densities and switching frequencies dramatically increase in wide bandgap power electronics, electromagnetic interference (EMI) increasingly impacts power conversion efficiency, and reliability, which requires mitigation for effective operation. Herein, we propose a nanocomposite encapsulant created by directly incorporating magnetic iron oxide nanoparticles into a silicone matrix for the purpose of EMI shielding. The addition of small amounts of particles to the silicone resulted in a 1.7 dBμV drop in EMI intensity; however, the addition of the iron oxide reduced the dielectric breakdown strength of the silicone matrix by 83% with respect to concentration. Further efforts to optimize the dielectric properties of the nanocomposites with respect to the nanoparticle loading are necessary to directly apply this technology; yet the results indicate that magnetic nanocomposites could be a potential avenue toward mitigating EMI in power devices.

References

1.
Costa
,
F.
, and
Magnon
,
D.
,
2005
, “
Graphical Analysis of the Spectra of EMI Sources in Power Electronics
,”
IEEE Trans. Power Electron.
,
20
(
6
), pp.
1491
1498
.10.1109/TPEL.2005.857564
2.
Wang
,
S.
,
Lee
,
F. C.
,
Chen
,
D. Y.
, and
Odendaal
,
W. G.
,
2004
, “
Effects of Parasitic Parameters on EMI Filter Performance
,”
IEEE Trans. Power Electron.
,
19
(
3
), pp.
869
877
.10.1109/TPEL.2004.826527
3.
Wang
,
S.
, and
Lee
,
F. C.
,
2010
, “
Analysis and Applications of Parasitic Capacitance Cancellation Techniques for EMI Suppression
,”
IEEE Trans. Ind. Electron.
,
57
(
9
), pp.
3109
3117
.10.1109/TIE.2009.2038333
4.
Murata
,
Y.
,
Takahashi
,
K.
,
Kanamoto
,
T.
, and
Kubota
,
M.
,
2017
, “
Analysis of Parasitic Couplings in EMI Filters and Coupling Reduction Methods
,”
IEEE Trans. Electromagn. Compat.
,
59
(
6
), pp.
1880
1886
.10.1109/TEMC.2017.2690457
5.
Takahashi
,
K.
,
Murata
,
Y.
,
Tsubaki
,
Y.
,
Fujiwara
,
T.
,
Maniwa
,
H.
, and
Uehara
,
N.
,
2019
, “
Mechanism of Near-Field Coupling Between Noise Source and EMI Filter in Power Electronic Converter and Its Required Shielding
,”
IEEE Trans. Electromagn. Compat.
,
61
(
5
), pp.
1663
1672
.10.1109/TEMC.2018.2870082
6.
Xu
,
C. D.
,
Cheng
,
K. W. E.
,
Zou
,
Y.
,
Ho
,
H. F.
, and
Wang
,
X. L.
, and
2016
, “
A Polymer Bonded Gridded Box EMI Shielding Method Based on FEM for High Speed Railway
,” International Symposium on Electrical Engineering (
ISEE
), Hong Kong, China, Dec. 14, p.
4
.10.1109/EENG.2016.7846356
7.
Yang
,
Y. C.
,
Huang
,
D. C.
,
Lee
,
F. C.
, and
Li
,
Q.
, and
2013
, “
Transformer Shielding Technique for Common Mode Noise Reduction in Isolated Converters
,” IEEE Energy Conversion Congress and Exposition (
ECCE
), Denver, CO, Sept. 15–19, pp.
4149
4153
.10.1109/ECCE.2013.6647252
8.
Geetha
,
S.
,
Kumar
,
K. K. S.
,
Rao
,
C. R. K.
,
Vijayan
,
M.
, and
Trivedi
,
D. C.
,
2009
, “
EMI Shielding: Methods and Materials-A Review
,”
J. Appl. Polym. Sci.
,
112
(
4
), pp.
2073
2086
.10.1002/app.29812
9.
Whitt
,
R.
,
Huitink
,
D.
,
Hudson
,
S.
,
Nafis
,
B.
,
Yuan
,
Z.
,
Narayanasamy
,
B.
,
Deshpande
,
A.
,
Luo
,
F.
,
Imran
,
A.
,
Clarke
,
Z.
, and
Smith
,
S.
,
2019
, “
Additive Manufactured, Low EMI, Non-Metallic Convective Heat Spreader Design and Optimization
,”
ASME
Paper No. IPACK2019-6442.10.1115/IPACK2019-6442
10.
Ganguly
,
S.
,
Bhawal
,
P.
,
Ravindren
,
R.
, and
Das
,
N. C.
,
2018
, “
Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review
,”
J. Nanosci. Nanotechnol.
,
18
(
11
), pp.
7641
7669
.10.1166/jnn.2018.15828
11.
Jiang
,
D. W.
,
Murugadoss
,
V.
,
Wang
,
Y.
,
Lin
,
J.
,
Ding
,
T.
,
Wang
,
Z. C.
,
Shao
,
Q.
,
Wang
,
C.
,
Liu
,
H.
,
Lu
,
N.
,
Wei
,
R. B.
,
Subramania
,
A.
, and
Guo
,
Z. H.
,
2019
, “
Electromagnetic Interference Shielding Polymers and Nanocomposites-A Review
,”
Polym. Rev.
,
59
(
2
), pp.
280
337
.10.1080/15583724.2018.1546737
12.
Chung
,
D. D. L.
,
2001
, “
Electromagnetic Interference Shielding Effectiveness of Carbon Materials
,”
Carbon
,
39
(
2
), pp.
279
285
.10.1016/S0008-6223(00)00184-6
13.
Thomassin
,
J. M.
,
Jerome
,
C.
,
Pardoen
,
T.
,
Bailly
,
C.
,
Huynen
,
I.
, and
Detrembleur
,
C.
,
2013
, “
Polymer/Carbon Based Composites as Electromagnetic Interference (EMI) Shielding Materials
,”
Mater. Sci. Eng. R-Rep.
,
74
(
7
), pp.
211
232
.10.1016/j.mser.2013.06.001
14.
Sankaran
,
S.
,
Deshmukh
,
K.
,
Ahamed
,
M. B.
, and
Pasha
,
S. K. K.
,
2018
, “
Recent Advances in Electromagnetic Interference Shielding Properties of Metal and Carbon Filler Reinforced Flexible Polymer Composites: A Review
,”
Compos. Part A Appl. Sci. Manuf.
,
114
, pp.
49
71
.10.1016/j.compositesa.2018.08.006
15.
Chen
,
C. S.
,
Chen
,
W. R.
,
Chen
,
S. C.
, and
Chien
,
R. D.
,
2008
, “
Optimum Injection Molding Processing Condition on EMI Shielding Effectiveness of Stainless Steel Fiber Filled Polycarbonate Composite
,”
Int. Commun. Heat Mass Transfer
,
35
(
6
), pp.
744
749
.10.1016/j.icheatmasstransfer.2008.02.006
16.
Azadmanjiri
,
J.
,
Hojati-Talemi
,
P.
,
Simon
,
G. P.
,
Suzuki
,
K.
, and
Selomulya
,
C.
,
2011
, “
Synthesis and Electromagnetic Interference Shielding Properties of Iron Oxide/Polypyrrole Nanocomposites
,”
Polym. Eng. Sci.
,
51
(
2
), pp.
247
253
.10.1002/pen.21813
17.
Shukla
,
V.
,
2019
, “
Review of Electromagnetic Interference Shielding Materials Fabricated by Iron Ingredients
,”
Nanoscale Adv.
,
1
(
5
), pp.
1640
1671
.10.1039/C9NA00108E
18.
Bayat
,
M.
,
Yang
,
H.
, and
Ko
,
F.
,
2018
, “
Effect of Iron Oxide Nanoparticle Size on Electromagnetic Properties of Composite Nanofibers
,”
J. Compos. Mater.
,
52
(
13
), pp.
1723
1736
.10.1177/0021998317732139
19.
Lafuente
,
B.
,
Downs
,
R. T.
,
Yang
,
H.
, and
Stone
,
N.
,
2015
, “
The Power of Databases: The RRUFF Project
,”
Highlights in Mineralogical Crystallography
,
W. De Gruyter
,
Berlin, Germany
, pp.
1
30
.
20.
Novakova
,
A. A.
,
Lanchinskaya
,
V. Y.
,
Volkov
,
A. V.
,
Gendler
,
T. S.
,
Kiseleva
,
T. Y.
,
Moskvina
,
M. A.
, and
Zezin
,
S. B.
,
2003
, “
Magnetic Properties of Polymer Nanocomposites Containing Iron Oxide Nanoparticles
,”
J. Magn. Magn. Mater.
,
258–259
, pp.
354
357
.10.1016/S0304-8853(02)01062-4
21.
Evans
,
B. A.
,
Fiser
,
B. L.
,
Prins
,
W. J.
,
Rapp
,
D. J.
,
Shields
,
A. R.
,
Glass
,
D. R.
, and
Superfine
,
R.
,
2012
, “
A Highly Tunable Silicone-Based Magnetic Elastomer With Nanoscale Homogeneity
,”
J. Magn. Magn. Mater.
,
324
(
4
), pp.
501
507
.10.1016/j.jmmm.2011.08.045
22.
Liu
,
Z. L.
,
Peng
,
W. X.
,
Zare
,
Y.
,
Hui
,
D.
, and
Rhee
,
K. Y.
,
2018
, “
Predicting the Electrical Conductivity in Polymer Carbon Nanotube Nanocomposites Based on the Volume Fractions and Resistances of the Nanoparticle, Interphase, and Tunneling Regions in Conductive Networks
,”
Rsc Adv.
,
8
(
34
), pp.
19001
19010
.10.1039/C8RA00811F
23.
Shen
,
Y.
,
Lin
,
Y. H.
,
Li
,
M.
, and
Nan
,
C. W.
,
2007
, “
High Dielectric Performance of Polymer Composite Films Induced by a Percolating Interparticle Barrier Layer
,”
Adv. Mater.
,
19
(
10
), pp.
1418
1422
.+.10.1002/adma.200602097
24.
Yu
,
K.
,
Niu
,
Y. J.
,
Xiang
,
F.
,
Zhou
,
Y. C.
,
Bai
,
Y. Y.
, and
Wang
,
H.
,
2013
, “
Enhanced Electric Breakdown Strength and High Energy Density of Barium Titanate Filled Polymer Nanocomposites
,”
J. Appl. Phys.
,
114
(
17
), p.
174107
.10.1063/1.4829671
25.
Barber
,
P.
,
Balasubramanian
,
S.
,
Anguchamy
,
Y.
,
Gong
,
S.
,
Wibowo
,
A.
,
Gao
,
H.
,
Ploehn
,
H. J.
, and
Zur Loye
,
H. C.
,
2009
, “
Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage
,”
Materials
,
2
(
4
), pp.
1697
1733
.10.3390/ma2041697
26.
Nelson
,
J. K.
,
2010
, “
Background, Principles and Promise of Nanodielectrics
,”
Dielectric Polymer Nanocomposites
,
J. K.
Nelson
, ed.,
Springer
,
Boston, MA
, p.
368
.
You do not currently have access to this content.